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WEAK CONVERGENCE THEOREMS OF
ASYMPTOTICALLY NONEXPANSIVE
SEMIGROUPS IN BANACH SPACES*
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1. Introduction

In {16], Opial obtained the weak convergence theorem in a Hilbert
space; Let C' be a closed convex subset of a Hilbert space H and
let T : € — C be a nonexpansive asymptotically regular mapping
for which the set F(T') of fixed points is nonempty. Then, for any
z in C, the sequence {T"z} is weakly convergent to an element of
F(T) (<f. [2],[17]). Similar results were also obtained by Bruck ([3}),
Emmanuele ({4]), Gornicki ({6]), Hirano ([7]), Kobayashi ([9]} and
Miyadera ({14]) in uniformly convex Banach spaces. Corresponding
theorems for asymptotically nonexpansive mappings and asymptoti-
cally nonexpansive semigroups were investigated by many mathemati-
cians ([1), (13}, [15], [19], [20], [21]).

Recently, Lin-Tan- Xu ([11}) proved the convergence of iterates
{T"z} of an asymptotically nonexpansive mapping T in Banach spaces
without the uniform convexity.

And also, Lau-Takahashi {([10]) proved the following theorem; Let
C be a closed convex subset of a uniformly convex Banach space X
with Fréchet differentiable norm, G a right reversible semitopological
semigroup, and § = {S(¢): ¢t € G} a nonexpansive semigroup on C. If
F(8) # @ and W(z) C F(S) for z € C, then the net {S(t)z} converges
weakly to some p € F(S) (see Theorem 2 and 3 in {10]).

In this paper, we prove the result of Lau-Takahashi ({10]) in Banach
spaces without the uniform convexity. The results of this paper are
also complete extensions of Lin-Tan-Xu ({11]).
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2. Preliminaries and Notations

Let C be a nonempty closed convex subset of a real Banach space
X. A mapping T : C — C is said to be asymptoticelly nonezpansive
([5}) if for each n > 1,

| Ttz —T "y [[K(1+an)lz~y i

for all z,y € C, where lim,, o @, = 0. In particular if a, = 0 for all
n > 1, then T is said to be nonezpansive. Let S = {S(¢) : ¢ > 0} be
a family of mappings from C into itself. & is called an asymptotically
nonezpansive semigroup on C if S(t + s) = S(t)S(s) for every ¢,s > 0,
and there exists a function a(-) : Rt — Rt with lim¢_.c a(t) = 0 such

that
| S-Sy [<Q+a®))||z—vy|

for all z,y € C and t > 0. In particular, if a(t) = 0 for all ¢ > 0, then
S is called a nonezpansive semigroup on C.

Let G be a semitopological semigroup, i.e., G is a semigroup with
a Hausdorff topology such that for each s € G the mappings s — as
and s — sa from G to G are continous. G is called right reversible if
any two closed left ideals of G have nonvoid intersection. In this case,
(G, >) is a directed system when the binary relation “ = " on G is
defined by t 3= s if and only if

{tJUuGtCc {s}UGs

for all £,5 € G. Right reversible semitopological semigroup include all
commutative semigroups which are right amenable as discrete semi-
groups {[8]). Left reversibility of G is defined similarly. G is called
reversible if it is both left and right reversible.
A family § = {S(t) : t € G} of mappings from C into itself is said to
be a continuous representation of G on C if it satisfies the followings:
(1) S(ts)e = S(t)S(s)z for all t,s € G and x € C.
(2) For every ¢ € C, the mapping (s,z) — S(8)z from G x C into
C is continuous when G x C has the product topology.
A continuous representation S of G on C is said to be an asymptotically

nonezpansive semigroup on C if each ¢ € G, there exists k; > 0 such
that

ISz —-SHy < +k) -yl
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for all z,y € C, where limycg k; = 0. Let F(S) denote the set of all
common fixed points of mappings S(¢) for t € G in C, that is,

F(8) = [} F(S@).

teG

Some rudiments in the geometry of Banach spaces are necessary for
the proofs of the main theorems in this paper. In the sequel, we give the
notations; lim = limsup, lim = liminf,“ — " for weak convergence,
and “ — 7 for strong convergence. Also, a space X is always un-
derstood to be an infinite dimensional Banach space without Schur’s
property, i.e., the weak and strong convergence doesn’t coincide for
nets.

A Banach space X is said to satisfy Opial’s condition if for each net
{z«}aec in X, the condition z, — z implies that

I za~2|< lim [l 2o -yl

for all y # « (see {16] for any sequence {z,} in X). Spaces possessing
that property include the Hilbert spaces and the I? spaces for 1 < p <
oo. However, L?(p # 2} do not satisfy that property ([12]).

Recently, Prus ([18]) introduced the notion of the uniform Opial
condition for any sequence {z,} in X. A Banach space X is said to
satisfy the wniform Opial condition if for each ¢ > 0, there exists an
r > 0 such that

147 < lim || o +2, |

a€G
for each z € X with || # ||> ¢ and each net {z4}aecc in X such that
oy — 0 as ¢ € G and lim €G | za ||[= 1. We now define Opial’s
modulus of X, denoted by rx(-), as follows

rx(c) = inf{lim ||  + 2 || —1},
3¢}

where ¢ > 0 and the infimum is taken over all z € X with || z ||> ¢
and nets {Zs}aec in X such that limgeg 24 = 0 weakly and lim ., ||
Zo |2 1. 1t is easy to see that the function rx(-) is nondecreasing and
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that X satisfies the uniform Opial condition if and only if rx(c) > 0
for all ¢ > 0. Furthermore, we know that the Opial’s modulus rx(-) of
X 1s continuous.

We now introduce the notion of the locally uniform Opial condition.
A Banach space X is said to satisfy the locally uniform Opial condition
if for any weak null net {z4}aeq in X with lim_ - [l zo {{> 1 and any
¢ > 0, there is an r > 0 such that

l+r<lim || za+ 2|
a€G

for all # € X with || z ||> ¢ (see [11] for sequence). We can easily
see that each “lim” can be replaced by “lm” in the definition of
the locally uniform Opial condition. Clearly, uniform Opial condition
implies locally uniform Opial condition, which in turn implies Opial’s
condition ([11]).

Let D be a subset of a Banach space X, then convD will denote
its closed convex hull of D. Let W(z) denote the set of all weak lim-
its of subnets {S(t4)z}acc of the net {S(t)z} for a semitopological
semigroup G.

3. Locally Uniform Opial and Uniform Opial Condition

In this section, we study the asymptotic behavior of the orbits
{S(t)z} for an asymptotically nonexpansive semigroup S = {S(¢) :
t € G}, under the locally uniform Opial condition or uniform Opial
condition.

We have the following equivalent statements for locally uniform
Opial condition.

PRrRoPOSITION 3.1. If X is a Banach space, then the following two
statements are equivelent.

(1) X satisfies the locally unsform Opial condition.
(2) For any net {xo}aeg tn X which converges weakly to z € X
es o € G and for any net {yglgec in X, of

TR A T _ < T _
I (lim || 2o —yp ) < lim || 0 — 2 |

then {yg} converges strongly to z € X as B € G.
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Proof. (1)=>(2). Assume that X satisfies the locally uniform Opial
condition. Let {z,} C X be a weakly convergent net to r and {yz} a
net in X such that

Em(F |l o~ vs ) < T | 2~ 2 |f

If imaeg || o — 2 ||= 0, then we have limgeg || £o — 2 §|= 0. So it

is obvious that {yz} converges strongly to z € X as 8 € G. And if

limaeg || o — [I[> 0, then there exists a subnet {zq., } of {74} such
that

lim |l 2o, =2 |= I | 2a =2 || (= 5).

If {yg} dose not converge strongly to x, then there exist an ¢, > 0 and
a subnet {yg,} of {ys} such that

2 —yg, I|> €0

for all § € G. Letting z, = — . Then we have lim.eg || 24 [|= 1.
Hence, for all z € X with || bz ||> €., there exists an r > 0 such that

147 < Lim || 2y + 2 |
~€EG

from the definition of the locally uniform Opial condition. So, we have

E

1+r<lim||$°"_$+x—yﬂ‘
T jec! b b

that is,

b(l + '4") < h_ﬂ_'l " Lo, — Yps ”
Y€G

for all § € G, which implies

lim { im - > {im —zl.
I (B 2o vs 1 )2 80 47) > I [ 20—

This is a contradiction.
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(2)=(1). Suppose that X does not satisfy the locally uniform
Opial condition. Then there exist a weakly null net {zs}oec in X
with imgeg || o )l 1, a constant ¢ > 0 and a net {yg} C X with
|| s [[= ¢ for all 8 € G such that

1+ 75> Em || o +(-vp) |

for every rg > 0 with limgegrs = 0. Hence we have
lim { lim = <1< iim i
(18 e wa | )< 12 Bl e

By assumption, {yg} converges strongly to 0. This contracts the fact
| ¥g 1= ¢ for all B € G. This completes the proof.

We begin with the following result which is crucial for the Proposion
3.3.

LEMMA 3.2. Let C be a nonempiy weakly compact convex subset
of X satisfying the Opial’s condstion and let G be a right reversible
semitopological semigroup. Let S = {S(t) :t € G} be an asymptotically
nonezpansive semigroup on C. If also {Z4}ecc 13 a net in C converging
weakly to = and for which the net {xy — S(t)zo} converges strongly to
0 asa € G for allt € G. Then we have the following resulis.

(1) Nyegcomv {S(s)r : s 3t} = cono W(z) # @.
(2) MNieg v {S(s)z : s = t} = {z}.

Proof. (1). Since C is weakly compact, (),cq€0no {S(s)x : s =
.t} # @ and

n cono {S(s)z : 8 3= t} = conv W(z).
teG

In fact, put M, = conv {S(s)z : s > t}. Then the inclusion W(z} €
NiecMy(= M) being trivial, and hence conv W(z) C M. Now we must
prove that M C ¢onv W(x). If not, then thereis an u € M ~ cono W(z).
So, there exists a bounded linear functional B such that

B(u) > sup{B(v) : v € conv W(z)} > sup{B(v) : v € W(z)}.
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Furthermore, since u € M, forall t € G,
B(u) < sup{B(v):v € M;,t € G} <sup{B(S5(s)z): s = t}.

Hence, we have B(u) < limce B(S(2)z). Taking a subnet of { B(S(t)r)}
which converges to the lime g B(S(¢)z) and using the Eberliein-Smulyan
theorem, there exists a subnet {S{t4 )z} of {S(t)x} such that S(tq)z —
w and B(u) < B{w). Since w € W(a), we have a contradiction.

(2). Suppose that there exists y € (), €0n0{S(s)z : s > t} such
that y # z. Then by Opial’s condition,

T (| 20— 1< B 20—y
Since lim¢eg by = 0, there is a £, € G such that for all t € G with
t = to,
k, < HIEcurEG H Ta—Y ” '_hmae(}‘ “ Ta—2 ”
fimaeg || 2o — 2 +1

Since y € conw {S(s)z : s =t} for all ¢ 5 t., there exist A, (¢ = 1,2,
n)20with 30 A, =1 such that

hmaGG " To— Y " _KEIQGG ” Toa — H
1 AS(s)z -yl <
120 AS(s.)z ~ y] R DT

for all s, 3= t(i = 1,2, - -,n). Hence, we have

I || 2o -y || < m |l 20 - Z/\ S(s:)z i|+f|Z/\ S(s)z —y |

=1

<|| ZA S(s)z -y | +ZA im || S(s.)za — S(si)a |

=1

< z,\,s(s,)x Y+ A+ k) TR | e |

(hmOGG " T — Y " _mae(z‘ ” Ty — T ")
limgeq || 2o — 2 || +1
Gim, Ty — +1
+ ( &EG II y” ) ”xa_x”
limaeg §| €a ~ 2 || +1

= T ey
T [l 20—y |
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This contradiction establishes the result {2). This completes the proof.

In Proposition 3.3, we prove the demiclosedness principle at zero
for an asymptotically nonexpansive semigroup in a Banach space with
the locally uniform Opial codition. The following proposition plays a
crucial role in the proofs of our main theorems in this section.

PROPOSITION 3.3. Let X be o Banach space satisfying the locally
uniform Opial condition, C a nonempty weakly compact conver subset
of X, and G a right reversible semitopological semigroup. IfS = {S(%) :
t € G} is an asymptotically nonezpansive semigroup on C. Then I —
S(t) is demiclosed at zero, i.e., if {4} ueq 13 @ net in C which converges
weakly to © as a € G and if the net {zo — S(t)za} converges strongly
to zero as a € G, then (I — S(t))x =0 for allt € G.

Proof. Let o, — z and 2, — S(t)zo — Qas a € G forall t € G.
By Lemma 3.2, we have S(t)x — z as t € G. Since § = {S(t) : t € G}
is an asymptotically nonexpansive semigroup on C,

lim(lim || S(t)z ~ S(s)z ||) = lim(lim || S(st)z — S(s)= [1)
< lm(Bm(1+k,) || S(t)z — = )

=Fm Sz —a .

So, {S(s)z} converges strongly to z as s € G from Proposition 3.1.
Therefore, for all ¢t € G,(I — S(t))z = 0 by the continuity of S(t). This
completes the proof.

We need the following lemma in order to prove our main theorems
in this section.

LEMMA 3.4, Let the assumptions in Proposition 3.3 be satisfied. If
S(t) 13 asymptotically reqular at some z € C, t.e., imeeq || S(st)z —
S(t)x {|= 0 for all s € G. Then we have the following conclusions.

(1) F(8) C E(z), where E(z) = {y € C : limyeg |[S(t)z—y|lexist}.

(2) W(z) < F(S).

(3) W(z) i3 a singleton, and hence {S(t)x} converges weakly to a
point of F(S).
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Proof. (1). Let t %= s for t,s € G. Then t € {s}UGs. We may
assume that t € Gs. So there exists an g, € G such that gos — ¢ as
a € G. Then, for a € G and y € F(S),

I} S(gas)z —y | = S(ga)S(s)z — S(ga)y ||
S (Qtkg) | S(s)x~ylf-

Hence, we have
I Stz —~y <[ S(s)z -y |l
for all t >= s and y € F(S). This proves that F(S) C E(z) as desired.
(2). Let {S(#4)z} be a subnet of {S(¢)z} converging weakly toy € C
as a € G. Letting z, = S(tq)z. Then, since S(s) is asymptotically
regular, | zo — S(s)za || = 0 as o € G for all s € G. Since I — S(s) is

demiclosed at zero, from Proposition 3.3, (I —S(s))y =0forall s € G.
This completes the proof of (2).

(3). Let y; and y, be two weak limits of subnets {S(¢,)z} and
{S(tg)x} of the net {S(t)z}, respectively. Since W(z) C F(S), there
are dy,d; > 0 by (1) such that

dy = lim [ S(t)z —y: || and dp = Pefg i Sz —w -
If 4y # y2, then we have
& = lim | S(t)2 ~ 31 = T | S(tade — w1 |
< lim | S(ta)e — vz 1= Iim || SCts)z — w2 |
< ;—ie% I S(ts)z — 31 fl=lim || S(t)z — 9 ||
= dl.

This is a contradiction, which implies that W(z) is a singleton. This
completes the proof.

As a direct consequence of Lemma 3.4, we can prove the conver-
gence theorems of orbits {S(t)z} of an asymptotically nonexpansive
semigroup § = {S{t) : t+ € G} for a right reversible semitopological
semigroup G.
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THEOREM 3.35. Let C be a nonemply weakly compact convez subset
of a Banach space X satisfying the locally uniform Opial cond-tisn, G
a right reversible semitopological semigroup, and § = {S(t) : # € G} an
asymptotically nonezpansive semigroup on C. If S(2) is asymplotically
regular at x € C, then {S(t)x} converges weakly to a point p in F(S)
asteG.

Proof. From (2),(3) of Lemma 3.4, it is easy to show that the orbits
{S(t)x} converges weakly to p in F(S)ast € G.

It is not clear whether the asymptotic regularity in Theorem 3.5
can be weakened to the weakly asymptotic regularity. We improve the
Theorem 3.5 when the space X is assumed to be satisfying the uniform
Opial condition.

THEOREM 3.6. Lei C be a nonempty weakly compact convez subset
of @ Banach space X satisfying the uniform Opial condition and let
G,S be as in Theorem 3.5. If S(2) is weakly asympiotically regular at
x € C, te., wlhmeeg || S(st)z - S(t)z ||=0 for all s € G, then {5(t)z}
converges weakly to a pont p in F(S).

Proof. In order to prove the Theorem 3.6, we must prove the
results of Lemma 3.4 under assumptions of Theorem 3.6. We can easily
prove that (1) and (3) of Lemma 3.4 are obvious. Now, we have to show
only (2). Let y be a weak limit of subnet {S(t,)z} of {S(¢t)z} asa € G.
Since 5(1) is weakly asymptotically regular at z € C, {S(sta )z} weakly
converges to y as a € G. Letting

() = B | S(ota)e ~y | .

Then, we have

Elelgr(s) = slgg;r(s) (=r)

In fact, for given € > 0, there exists an s¢ € G such that r{sp) <r + T
Also, since limye k¢ = 0, there exists a £y € G such that k; < 557 for
all £ %= 1o, where M = sup,.4 ||S(s)z — y||. Let 8 = as = toso. Since
G is right reversible, § € {ap} U Gag and so, we may assume that
B € Gap. Hence, there exists {ty} C G such that tyag —» B asy € G.
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Since S(tyapts )z — y for all v € G, from the Opial’s condition,
rlty0) = T | S(tvasta) — v |
< (@; | S(t,tosota)e — S(tate)y ||
<1+ ke go)r(so)
<r(so) + %

for all v € G. Hence, we have

£
r(B) < rls0) +5
for all B > ay. Therefore, we have

iler?;r(s) < sup r(f)<r+e= :ggr(s) + .

Brao

Since ¢ 1s arbitrary, we have
= lim and r < r(s
r ale 1 r(s) ( )

for all s € G.
First, if » = 0, then lim,eq S(8)y = y from

15(s)y = vl < Emdll S(s)y - S(sta)a || + | S(ote)z =y 1
S+ k)T Ny — S | +7(s).

Therefore, we have §S{(t)y =y forall t € G.

Now suppose that r > 0. In order to get the desired result, it suffices
to show that {S(t)y} converges strongly to y. If not, there exist an
g >0 and B € G such that |[{S(ts)y ~ yl| > €. Since limaeer(s) = r(=
inf r(s)), there exist an sy € G such that r(sg) < r(1 + rx(c)), where

rx(¢) is the Opial’s modulus of X and ¢ = £(> 0). And also, we know
that, for each 8 € G,

S(tgsota)r —y
r

-0
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as a € G and

- r(taso) >1
" >

lim
a€G

r

S(tgsota)r — yl

with M > ¢. Since rx(c) > 0, we have

m - — St
1+rx(c) < lig}“s(tﬂs"t“)x ¥y, ( ﬁ)y“_

r r

On ther other hand, from
B [[S(tssata)e — S(talull < (1+ky,) T [1S(sota) = vll

we have

1+rx{(c)> ( )> hm lim

BEG aEG r

Stprtale =y, y= S|

This is a contradiction, which implies that {S(t)y} converges strongly
to y. Thus we have W(z) C F(8). This completes the proof.
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