Pusan Kyðngnam Math. J. 12(1996), No. 1, pp. 77-83

ON CERTAIN BAZILEVIC FUNCTIONS OF ORDER β

Sang Keun Lee*, Kwang Ho Shon** and Ern Keun Kwon***

1. Introduction.

Let $\mathcal{A}(p, n)$ be the class of the functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=n}^{\infty} a_{p+k}^{-} z^{p+k} \quad(n \in\{1,2,3, \cdots \cdots\}) \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disk $U=\{z:|z|<1\}$.
A function $f(z)$ belonging to $\mathcal{A}(p, n)$ is said to be p-valently starlike of order β if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\beta \tag{1.2}
\end{equation*}
$$

for some $\beta(0 \leq \beta<p)$ and for all $z \in U$. We denote by $\mathcal{S}^{*}(p, n, \beta)$ the subclass of $\mathcal{A}(p, n)$ consisting of functions which are p -valently starlike of order β.

A function $f(z)$ in $\mathcal{A}(p, n)$ is said to be in the subclass $\mathcal{B}(p, n, \alpha, \beta)$ of Bazilevič function class if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z) f(z)^{\alpha-1}}{g(z)^{\alpha}}\right)>\beta \tag{1.3}
\end{equation*}
$$

for some $\alpha(0<\alpha)$ and $\beta(0 \leq \beta<p), g(z) \in \mathcal{S}^{*}(p, n, 0)$ and for all $z \in U$. Further, let $\mathcal{B}_{1}(p, n, \alpha, \beta)$ be the subclass of $\mathcal{B}(p, n, \alpha, \beta)$ for $g(z)=z^{p} \in \mathcal{S}^{*}(p, 1,0)$.

Received March 22, 1996.
This paper was supported in part by the Basic Science Research Institute Program, Ministry of Education, Korea, 1995, Project No BSRI-95-1411.

Remark. 1. $B_{1}(1, \alpha, \beta)=\mathcal{B}_{1}(1,1, \alpha, \beta)$ were introduced and studied by Owa and Obradovič ([4]) and $B_{1}(1, \alpha, 0)=\mathcal{B}_{1}(1,1, \alpha, 0)$ by Singh ([6]).
2. $B(n, \alpha, \beta)=\mathcal{B}_{1}(1, n, \alpha, \beta)$ by Ponnusamy ([5]), $B_{1}(p, \alpha, \beta)=$ $\mathcal{B}_{1}(p, 1, \alpha, \beta)$ by Owa([3]) and $B(1,0)=\mathcal{B}_{1}(1, n, 1,0), B(2,0)=(1, n, 2,0)$ by Cho([I]).

2. The Class $\mathcal{B}_{1}(p, n, \alpha, \beta)$.

In order to obtain our main result, we recall the following lemmas due to Owa([3]).

Lemma 1. If $f(z) \in B_{1}(n, \alpha, \beta)=\mathcal{B}_{1}(1, n, \alpha, \beta)$, then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f(z)}{z}\right)^{\alpha}>\frac{n+2 \alpha \beta}{n+2 \alpha}(z \in U) \tag{2.1}
\end{equation*}
$$

Lemma 2. If $f(z) \in B_{1}(n, \alpha, \beta)=\mathcal{B}_{1}(1, n, \alpha, \beta)$, then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f(z)}{z}\right)^{\frac{\alpha}{2}}>\frac{n+\sqrt{n^{2}+4 \alpha \beta(n+\alpha)}}{2(n+\alpha)}(z \in U) \tag{2.2}
\end{equation*}
$$

Using the above Lemma 1 , we prove the following theorem.
Theorem 1. Let $f(z) \in \mathcal{B}_{1}(p, n, \alpha, \beta)$ with $\alpha>0$ and $0 \leq \beta<p$, then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f(z)}{z^{p}}\right)^{\alpha}>\frac{n+2 \alpha \beta}{n+2 p \alpha}(z \in U) \tag{2.3}
\end{equation*}
$$

Proof. We define the function $h(z)$ by $h(z)^{p}=f(z)$ for $f(z) \in$ $\mathcal{B}_{1}(p, n, \alpha, \beta)$. Then we have

$$
\begin{equation*}
\frac{z f^{\prime}(z) f(z)^{\alpha-1}}{z^{p \alpha}}=p \frac{z h^{\prime}(z) h(z)^{p \alpha-1}}{z^{p \alpha}} \tag{2.4}
\end{equation*}
$$

Since $f(z) \in B_{1}(p, n, \alpha, \beta)$ if and only if $R e\left(\frac{z f^{\prime}(z) f(z)^{\alpha-1}}{z^{p \alpha}}\right)>\beta$, from (2. 4) we get

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z h^{\prime}(z) h(z)^{p \alpha-1}}{z^{p \alpha}}\right)>\frac{\beta}{p} \tag{2.5}
\end{equation*}
$$

Thus $h(z) \in \mathcal{B}_{1}\left(1, n, p \alpha, \frac{\beta}{p}\right)$. By Lemma 1,
(2. 6)

$$
\operatorname{Re}\left(\frac{f(z)}{z^{p}}\right)^{\alpha}=\operatorname{Re}\left(\frac{h(z)}{z}\right)^{p \alpha}
$$

$$
>\frac{n+2 \alpha \beta}{n+2 p \alpha} .
$$

Letting $n=1$ in Theorem 1 , we have
Corollary 1 ([2]). If $f(z) \in B_{(}(p, \alpha, \beta)=\mathcal{B}_{1}(p, 1, \alpha, \beta)$ with $\alpha>0$ and $0 \leq \beta<p$, then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f(z)}{z^{p}}\right)^{\alpha}>\frac{1+2 \alpha \beta}{1+2 p \alpha}(z \in U) . \tag{2.7}
\end{equation*}
$$

Letting $p=1, n=1$ in Theorem 1 , we get
Corollary 2([4]). $f(z) \in B_{1}(1, \alpha, \beta)=\mathcal{B}_{1}(1,1, \alpha, \beta)(\alpha>0,0 \leq$ $\beta<p$) then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f(z)}{z}\right)^{\alpha}>\frac{1+2 \alpha \beta}{1+2 \alpha}(z \in U) \tag{2.8}
\end{equation*}
$$

Letting $p=1, \alpha=1$ in Theorem 1 , we have
Corollary 3. If $f(z) \in A(n)=\mathcal{A}(1, n)$ with $\operatorname{Re} f^{\prime}(z)>\beta$, then

$$
\begin{equation*}
R e\left(\frac{f(z)}{z}\right)>\frac{n+2 \beta}{n+2}(z \in U) \tag{2.9}
\end{equation*}
$$

REMARK. If we take $\beta=0$ in Corollary 3, we have the Theorem 2 by Cho([1]).

Using the above Lemma 2, we have the following

Theorem 2. Let $f(z) \in \mathcal{B}_{1}(p, n, \alpha, \beta)$ with $\alpha>0$ and $0 \leq \beta<p$, then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f(z)}{z^{p}}\right)^{\frac{\alpha}{2}}>\frac{n+\sqrt{n^{2}+4 p \alpha \beta(n+p \alpha)}}{2(n+p \alpha)}(z \in U) \tag{2.10}
\end{equation*}
$$

Proof. We define the function $h(z)^{p}=f(z)$ for $f(z) \in \mathcal{B}_{1}(p, n, \alpha, \beta)$ as Theorem 1. Then we have

$$
h(z) \in \mathcal{B}_{1}\left(1, n, p \alpha, \frac{\beta}{p}\right) .
$$

By Lemma 2, we have
(2. 11)

$$
\begin{aligned}
\operatorname{Re}\left(\frac{f(z)}{z^{p}}\right)^{\frac{\alpha}{2}} & =\operatorname{Re}\left(\frac{h(z)}{z}\right)^{\frac{p \alpha}{2}} \\
& >\frac{n+\sqrt{n^{2}+4 p \alpha \beta(n+p \alpha)}}{2(n+p \alpha)}
\end{aligned}
$$

Letting $n=1$ in Theorem 2, we have
Corollary 4. Let $f(z) \in \mathcal{B}_{1}(p, 1, \alpha, \beta)$ with $\alpha>0$ and $0 \leq \beta<p$, then
(2. 12)

$$
\operatorname{Re}\left(\frac{f(z)}{z^{p}}\right)^{\frac{\alpha}{2}}>\frac{1+\sqrt{1+4 \alpha \beta(1+p \alpha)}}{2+2 p \alpha}(z \in U)
$$

Letting $p=1$ in Theorem 2, we have
Corollary $5([3])$. If $f(z) \in B(n, \alpha, \beta)=\mathcal{B}_{1}(1, n, \alpha, \beta)$ with $\alpha>0$ and $0 \leq \beta<1$, then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f(z)}{z^{p}}\right)^{\frac{q}{2}}>\frac{n+\sqrt{n^{2}+4 \alpha \beta(n+p \alpha)}}{2(n+\alpha)}(z \in U) \tag{2.13}
\end{equation*}
$$

If we take $p=1, \alpha=2$ in Theorem 2, we have

Corollary $6([1])$. If $f(z) \in B(n, 2)=\mathcal{B}_{(1, n, 2, \beta) \text {, then }}$

$$
\begin{equation*}
\frac{f(z)}{z}>\frac{n+\sqrt{n^{2}+8 \beta(n+\alpha)}}{2(n+2)} \tag{2.14}
\end{equation*}
$$

REMARK. If we take $\beta=0$ in Corollary 6, we have Theorem 3 due to Cho([1]).

Theorem 3 Let $f(z) \in \mathcal{B}_{1}(p, n, \alpha, \beta)$ with α and $0 \leq \beta<p$ and $G(z)$ defined by

$$
\begin{equation*}
G(Z)=\left(z^{p \gamma} f(z)^{\alpha}\right)^{\frac{1}{\alpha+\gamma}}(\gamma \geq 0) . \tag{2,15}
\end{equation*}
$$

Then $G(z)$ is in the class $\mathcal{B}_{1}(p, n, \alpha+\gamma, \delta)$, where .

$$
\begin{equation*}
\delta \approx \frac{1}{\alpha+\gamma}\left(\frac{p \gamma(n+2 \alpha \beta)}{n+2 p \alpha}+\alpha \beta\right) . \tag{2.16}
\end{equation*}
$$

Proof. Differenting both sides of (2.15) we have

$$
\begin{equation*}
(\alpha+\gamma) G^{\prime}(z) G(z)^{(\alpha+\gamma)-1}=p \gamma z^{p \gamma-1} f(z)^{\alpha}+\alpha z^{p \gamma} f^{\prime}(z) f(z)^{\alpha-1} \tag{2.17}
\end{equation*}
$$

By Theorem 1 and (2. 17), we have

$$
\begin{aligned}
& \operatorname{Re}\left(\frac{z G^{\prime}(z) G(z)^{(\alpha+\gamma)-1}}{z^{p(\alpha+\gamma}}\right) \\
& =\frac{1}{\alpha+\gamma}\left(p \gamma \operatorname{Re}\left(\frac{f(z)}{z^{p}}\right)+\alpha \operatorname{Re}\left(\frac{z f^{\prime}(z) f(z)^{\alpha-1}}{z^{p \alpha}}\right)\right) \\
& \geq \frac{1}{\alpha+\gamma}\left(\frac{p \gamma(n+2 \alpha \beta)}{n+2 p \alpha}+\alpha \beta\right) .
\end{aligned}
$$

Letting $n=1$ in Theorem 3, we have

Corollary $7([3])$. Let $f(z) \in B_{1}(p, \alpha, \beta)=\mathcal{B}_{1}(p, n, \alpha, \beta)$ with α and $0 \leq \beta<p$ and $G(z)$ defined by

$$
\begin{equation*}
G_{1}(Z)^{\alpha+\gamma}=z^{p \gamma} f(z)^{\alpha}(\gamma \geq 0) \tag{2.18}
\end{equation*}
$$

is in the class $B_{1}(p, \alpha+\gamma)=\mathcal{B}_{1}(p, n, \alpha+\gamma, \delta)$, where

$$
\begin{equation*}
\delta=\frac{1}{\alpha+\gamma}\left(\frac{p \gamma(n+2 \alpha \beta)}{1+2 p \alpha}+\alpha \beta\right) \tag{2.19}
\end{equation*}
$$

Theorem 4. Let $\left.f(z) \in \mathcal{B}_{(} p, n, \alpha \beta\right)$ with $\alpha>0$ and $0 \leq \beta<p$ and $H(z)$ defined by

$$
\begin{equation*}
H(z)=\left(z^{p \gamma} f(z)^{\frac{\alpha}{2}}\right)^{\frac{2}{\alpha+2 \gamma}} \tag{2.20}
\end{equation*}
$$

Then $H(z)$ is in the class $B_{1}\left(p, n, \frac{\alpha}{2}+\gamma, \delta\right)$, where

$$
\begin{equation*}
\delta=\frac{1}{\alpha+2 \gamma}\left(\frac{p \gamma\left(n+\sqrt{n^{2}+4 \alpha \beta(n+\beta \alpha)}\right)}{n+p \alpha}+2 \alpha \beta\right) \tag{2.21}
\end{equation*}
$$

Proof. Differenting both side of (2. 20), we have

$$
\left(\frac{\alpha}{2}+\gamma\right) H^{\prime}(z) H(z)^{\frac{\alpha}{2}+\gamma-1}=p \gamma z^{p \gamma-1} f(z)^{\frac{\alpha}{2}}+\frac{\alpha}{2} z^{p \gamma} f^{\prime}(z) f(z)^{\frac{\alpha}{2}-1}
$$

or

$$
\frac{z H^{\prime}(z) h(z)^{\frac{\alpha}{2}+\gamma-1}}{z^{p\left(\frac{\alpha}{2}+\gamma\right)}}=\frac{2 p \gamma}{\alpha+2 \gamma}\left(\frac{f(z)}{z^{p}}\right)^{\frac{\alpha}{2}}+\frac{2 \alpha}{\alpha+2 \gamma}\left(\frac{z f^{\prime}(z) f(z)^{\frac{\alpha}{2}-1}}{z^{p \frac{\alpha}{2}}}\right)
$$

By Theorem 2, we have

$$
\begin{aligned}
& \operatorname{Re}\left(\frac{z H^{\prime}(z) H(z)^{\frac{\rho}{2}+\gamma-1}}{z^{p\left(\frac{\gamma}{2}+\gamma\right)}}\right) \\
& \quad \geq \frac{1}{\alpha+2 \gamma}\left(\frac{p \gamma\left(n+\sqrt{n^{2}+4 \alpha \beta(n+\beta \alpha)}\right)}{n+p \alpha}+2 \alpha \beta\right) .
\end{aligned}
$$

References

1. N. E. Cho, On certasn subclasses of unvvalent functzons, Bull. Korean Math. Soc. 25(No2) (1988), 215-219.
2. S. Owa, Notes on certain p-valent functions, PanAmerical Math J Vol 15 No 3 (1993), 79-93.
3. S. Owa, On certain Bazzlevič functzons of order β,, Int. J. Math. \& Math. Sci., 15(3) (1992), 613-616.
4. S. Owa and Obradovič,, Certain subclass of Bazzlevnč functions of type α, Int. J. Math. \& Math. Sci. 9 (1986), 347-359.
5. S. Ponnusamy and V. Karunakaran, Differential subordination and conformal mappings, Complex Variables, vol. 11, 1988, pp. 79-86.
6. R Singh, On Bazilevid functions, Proc Amer Math. Soc. 38 (1973), 261-271.
*Department of Mathematics Gyeongsang National University Chinju 660-701, Korea.
** Department of Mathematics
Pusan National University Pusan 609-735, Korea.
*** Department of Mathematics
Andong National University
Andong 760-380, Korea.
