MΓ-HOMOMORPHISMS AND MΓ-IDEALS OF MΓ-GROUPS

Young In Kwon*, Young Bae Jun* and Jun Won Park**

The concept of M Γ -groups was first introduced by Satyanarayana ([6]) who used the term M Γ -modules. In 1987, Booth chose the term M Γ -group for the same of consistency with Pilz([5]). In [1],[2] and [3]. G.L.Booth and Groenewald obtained some interesting properties of the radicals of Γ -near-rings. But now we show that the usual isomorphism theorems for rings hold for M Γ -groups.

In this paper, the term "near-ring" will mean a right (distributive) near-ring. A Γ -near-ring is a triple $(M, +, \Gamma)$ where

- (i) (M, +) is a (not necessarily abelian) group;
- (ii) Γ is a nonempty set of binary operations on M such that for each $\gamma \in \Gamma$, $(M, +, \gamma)$ is a near-ring;
- (iii) $x\gamma(y\mu z) = (x\gamma y)\mu z$ for all $x, y, z \in M$ and $\gamma, \mu \in \Gamma$.

If M is a Γ -near-ring, the zerosymmetric part of M is the set $M_0 = \{x \in M : x\gamma 0 = 0 \text{ for all } \gamma \in \Gamma\}$. If $M_0 = M$, M is called zerosymmetric. Throughout this paper,M denotes a zerosymmetric Γ -near-ring.

DEFINITION 1[1]. Let (G, +) be a group. If, for all $x, y \in M$, $\gamma, \mu \in \Gamma$ and $g \in G$, it holds

- (i) $x\gamma g \in G$,
- (ii) $(x+y)\gamma g = x\gamma g + y\gamma g$,
- (iii) $x\gamma(y\mu g) = (x\gamma y)\mu g$, then G is called an $M\Gamma$ -group.

Let G and G' be M Γ -groups. If $f:G\to G'$ is a group homomorphism such that, for all $x\in M,\,\gamma\in\Gamma$ and $g\in G,\,f(x\gamma g)=x\gamma f(g)$, then f is called an M Γ -homomorphism. If f is bijective as well, then it is called an M Γ -isomorphism.

Received Feburary 15, 1996.

If G is an M Γ -group, a subset H of G is called an M Γ -ideal of G if

- (i) (H, +) is a normal divisor of (G, +), and
- (ii) for all $x \in M, \gamma \in \Gamma, h \in H$ and $g \in G, x\gamma(g+h) x\gamma g \in H$.

A subgroup K of G is called an M Γ -subgroup of G if $x\gamma k \in K$, for all $x \in M, \gamma \in \Gamma$ and $k \in K$. Since we are considering zerosymmetric Γ -near-rings only, every M Γ -ideal of G is also an M Γ -subgroup of G.

THEOREM 2. Let $f: G \to G'$ be an MT-homomorphism of MT-groups. For any MT-subgroup H of G, $f(H) = \{f(a) | a \in H\}$ is an MT-subgroup of G'. In particular, Im f = f(G) is an MT-subgroup of G'.

Proof. It is clear that f(H) is a subgroup of G' for any M Γ -subgroup H of G. Let $x \in M$, $\gamma \in \Gamma$ and $y \in f(H)$. Then y = f(a) for some $a \in H$ and so $x\gamma y = x\gamma f(a) = f(x\gamma a) \in f(H)$, since $x\gamma a \in H$. Thus f(H) is an M Γ -subgroup of G'.

THEOREM 3. Let $f: G \to G'$ be an MT-homomorphism of MT-groups and let K = Kerf. For any MT-subgroup H' of G', $f^{-1}(H') = \{x \in G | f(x) \in H'\}$ is an MT-subgroup of G containing K.

Proof. Note that $f^{-1}(H')$ is a subgroup of G. Let $x \in M$, $\gamma \in \Gamma$ and $a \in f^{-1}(H')$. Then $f(x\gamma a) = x\gamma f(a) \in H'$ because H' is an Mrsubgroup of G' and $f(a) \in H'$. It follows that $x\gamma a \in f^{-1}(H')$, so that $f^{-1}(H')$ is an Mrsubgroup of G. Clearly K is contained in $f^{-1}(H')$, completing the proof.

THEOREM 4. Let $f: G \to G'$ be an $M\Gamma$ -monomorphism of $M\Gamma$ -groups. For any $M\Gamma$ -subgroup H of G, H is $M\Gamma$ -isomorphic to f(H). In particular, G is $M\Gamma$ -isomorphic to Im(f) which is equal to f(G).

Proof. By Theorem 2, f(H) is an M Γ -subgroup of G'. Now we define a map $\phi: H \to f(H)$ by $\phi(h) = f(h)$. Then ϕ is an M Γ -monomorphism from H onto f(H). So we have that H is M Γ -isomorphic to f(H).

THEOREM 5. Let G and G' be M Γ -groups and let $f: G \to G'$ be an M Γ -homomorphism. Then Ker f is an M Γ -ideal of G.

Proof. Clearly (Kerf, +) is a normal divisor of (G, +). Let $x \in M$, $\gamma \in \Gamma$, $h \in Kerf$ and $g \in G$. Then

$$f(x\gamma(g+h) - x\gamma g) = f(x\gamma(g+h)) - f(x\gamma g)$$

$$= x\gamma f(g+h) - x\gamma f(g)$$

$$= x\gamma (f(g) + f(h)) - x\gamma f(g)$$

$$= x\gamma f(g) - x\gamma f(g)$$

$$= 0.$$

and so $x\gamma(g+h) - x\gamma g \in Kerf$. Thus Kerf is an M Γ -ideal of G. This completes the proof.

Now we construct the factor M Γ -group. Let H be an M Γ -ideal of an M Γ -group G. Then G/H is a factor group under the operation

$$(g_1 + H) + (g_2 + H) = (g_1 + g_2) + H$$

for any $g_1 + H$, $g_2 + H \in G/H$. For all $x, y \in M$, $\gamma, \mu \in \Gamma$ and $g + H \in G/H$, we define $x\gamma(g + H) = x\gamma g + H$. Then we have

$$(x+y)\gamma(g+H) = (x+y)\gamma g + H$$
$$= (x\gamma g + y\gamma g) + H$$
$$= (x\gamma g + H) + (y\gamma g + H)$$
$$= x\gamma(g+H) + y\gamma(g+H).$$

and

$$x\gamma(y\mu(g+H)) = x\gamma(y\mu g + H)$$
$$= x\gamma(y\mu g) + H$$
$$= (x\gamma y)\mu g + H$$
$$= (x\gamma y)\mu(g+H).$$

Thus G/H is an M Γ -group. Hence we get the following theorem.

THEOREM 6. Let G be an M Γ -group and let H be an M Γ -ideal of G. Then the cosets of H form an M Γ -group G/H whose binary operations are defined by

$$(a+H)+(b+H)=(a+b)+H$$

and

$$x\gamma(a+H) = x\gamma a + H$$

for all $x \in M, \gamma \in \Gamma$ and $a + H, b + H \in G/H$. This $M\Gamma$ -group G/H is called the factor $M\Gamma$ -group of G by H.

THEOREM 7. Let H be an $M\Gamma$ -ideal of an $M\Gamma$ -group G. Then $f:G\to G/H$ given by f(g)=g+H is an $M\Gamma$ -homomorphism with kernel H.

Proof. Clearly f is a group homomorphism of G into G/H. For all $x \in M$, $\gamma \in \Gamma$ and $g \in G$, $f(x\gamma g) = x\gamma g + H = x\gamma(g + H) = x\gamma f(g)$, so f is an M Γ -homomorphism. Moreover

$$g \in Kerf \iff f(g) = H \iff g + H = H \iff g \in H.$$

Thus Kerf = H. This completes the proof.

THEOREM 8. Let $f: G \to G'$ be an MT-homomorphism with kernel H. Then f(G) is an MT-group, and the map $\phi: G/H \to f(G)$ given by $\phi(g+H) = f(g)$ is an MT-isomorphism. If $\psi: G \to G/H$ is the MT-homomorphism given by $\psi(g) = g + H$, then for each $g \in G$, we have $f(g) = (\phi \psi)(g)$.

Proof. Clearly, G is an M Γ -subgroup of G. By Theorem 2, f(G) is an M Γ -subgroup of G' and so f(G) is an M Γ -group. If a map ϕ : $G/H \to f(G)$ is defined by $\phi(g+H) = f(g)$ for $g \in G$, then ϕ is a group isomorphism. For any $g+H \in G/H$, $x \in M$ and $\gamma \in \Gamma$,

$$\phi(x\gamma(g+H)) = \phi(x\gamma g + H)$$

$$= f(x\gamma g)$$

$$= x\gamma f(g)$$

$$= x\gamma \phi(g+H).$$

Thus ϕ is an M Γ -isomorphism. Next, for each $g \in G$,

$$(\phi\psi)(g) = \phi(\psi(g)) = \phi(g+H) = f(g).$$

Thus we have $f = \phi \psi$. This completes the proof.

THEOREM 9. Let G be an $M\Gamma$ -group. If S is an $M\Gamma$ -subgroup of G and H is an $M\Gamma$ -ideal of G, then

- (1) the set $S + H = \{s + h | s \in S, h \in H\}$ is an $M\Gamma$ -subgroup of G and $S \cap H$ is an $M\Gamma$ -ideal of G, and
- (2) $G/(S \cap H) \simeq (S+H)/H$.

Proof. Clearly S+H is a subgroup of G. For all $x\in M, \gamma\in\Gamma$ and $s+h\in S+H$, $x\gamma(s+h)=x\gamma(s+h)-x\gamma s+x\gamma s\in S+H$, since H is an M Γ -ideal and S is an M Γ -subgroup of G. Thus S+H is an M Γ -subgroup of G. Now consider the M Γ -homomorphism $\pi:G\to G/H, \pi(g)=g+H$ and define a map $f:S\to G/H, f(s)=\pi(s)=s+H$. Then f is an M Γ -homomorphism. Also

$$Ker f = \{s \in S | f(s) = H\} = \{s \in S | s + H = H\} = S \cap H$$

and

$$Im f = \{(s+h) + H \in G/H | s+h \in S+H\} = (S+H)/H.$$

By Theorem 5 and Theorem 8, $S \cap H$ is an M Γ -ideal of G and

$$\phi: G/(S\cap H) \to (S+H)/H, \pi(g+(S\cap H)) = g+H$$

is an M Γ -isomorphism. So we have $S/(S \cap H) \simeq (S + H)/H$. This completes the proof.

THEOREM 10. Let G be an MT-group and let H, K be MT-ideals of G. If $H \subseteq K$, then $K/H = \{a + H | a \in K\}$ is an MT-ideal of G/H and $(G/H)/(K/H) \simeq G/K$.

Proof. Clearly K/H is a normal divisor of G/H. For all $x \in M, \gamma \in \Gamma$, $a + H \in K/H$ and $g + H \in G/H$,

$$x\gamma((g+H)+(a+H)) - x\gamma(g+H) = x\gamma((g+a)+H) - x\gamma(g+H)$$
$$= (x\gamma(g+a)+H) - (x\gamma g+H)$$
$$= x\gamma(g+a) - x\gamma g) + H \in K/H.$$

Thus K/H is an M Γ -ideal of G/H. Next, define a map

$$f: G/H \rightarrow G/K, f(g+H) = g+K.$$

Then the map f is well defined. In fact, let $g_1 + H = g_2 + H$ for any $g_1, g_2 \in G$. Then we have $g_1 - g_2 \in H \subseteq K$ and so $g_1 + K = g_2 + K$. Thus $f(g_1 + H) = f(g_2 + H)$. For any $g_1 + H$, $g_2 + H \in G/H$,

$$f((g_1 + H) + (g_2 + H)) = f((g_1 + g_2) + H)$$

$$= (g_1 + g_2) + K$$

$$= (g_1 + K) + (g_2 + K)$$

$$= f(g_1 + H) + f(g_2 + H).$$

and

$$f(x\gamma(g_1 + H)) = f(x\gamma g_1 + H)$$

$$= x\gamma g_1 + K$$

$$= x\gamma(g_1 + K)$$

$$= x\gamma f(g_1 + H).$$

Thus f is an M Γ -homomorphism. Moreover,

$$Ker f = \{g + H | f(g + H) = 0 + K\}$$

= $\{g + H | g + K = K\}$
= $\{g + H | g \in K\}$
= K/H .

and

$$Im f = \{f(g+H)|g+H \in G/H\}$$
$$= \{g+K|g \in G\}$$
$$= G/K.$$

Thus, by Theorem 8, we have $(G/H)/(K/H) \simeq Imf = G/K$. This completes the proof.

THEOREM 11. Let $f: G \to G'$ be an onto MT-homomorphism and let K = Kerf. Then we have the following:

- (1) For any MΓ-subgroup H of G, f(H) is an MΓ-subgroup of G'. Moreover, if H is an MΓ-ideal of G, then f(H) is an MΓ-ideal of G'.
- (2) For any $M\Gamma$ -subgroup H' of G', $f^{-1}(H') = \{x \in G | f(x) \in H'\}$ is an $M\Gamma$ -subgroup and $K \subseteq f^{-1}(H')$. Also, if H' is an $M\Gamma$ -ideal of G', then $f^{-1}(H')$ is an $M\Gamma$ -ideal of G.
- (3) For any MT-subgroup H of G, $f^{-1}(f(H)) = H + K$ and for any MT-subgroup H' of G', $f(f^{-1}(H')) = H'$.
- (4) Let X be the set of all MΓ-subgroups(MΓ-ideals) of G containing K and let Y be the set of all MΓ-subgroups(MΓ-ideals) of G'. Then there is one-to-one mapping of X onto Y.

Proof.

(1) By Theorem 2, if H is an M Γ -subgroup of G, then f(H) is an M Γ -subgroup of G'. Let H be an M Γ -ideal of G. For all $x \in M, \gamma \in \Gamma$, $f(a) \in f(H)(a \in H)$ and $g' \in G'$,

$$x\gamma(g' + f(a)) - x\gamma g' = x\gamma(f(g) + f(a)) - x\gamma f(g)$$
$$= x\gamma f(g + a) - f(x\gamma g)$$
$$= f(x\gamma(g + a) - x\gamma g) \in f(H)$$

for some $g \in G$, since H is an M Γ -ideal of G and $a \in H$. Thus f(H) is an M Γ -ideal of G'.

(2) By Theorem 3, if H' is an M Γ -subgroup of G', then $f^{-1}(H')$ is an M Γ -subgroup of G and $K \subseteq f^{-1}(H')$. Let H' be an M Γ -ideal of G'. Clearly $f^{-1}(H')$ is a normal divisor of G. For all $x \in M, \gamma \in \Gamma, a \in f^{-1}(H')$ and $g \in G$,

$$f(x\gamma(g+a) - x\gamma g) = f(x\gamma(g+a)) - f(x\gamma g)$$

$$= x\gamma f(g+a) - x\gamma f(g)$$

$$= x\gamma (f(g) + f(a)) - x\gamma f(g) \in H',$$

since H' is an M Γ -ideal of G' and $f(a) \in H'$.

- (3) If H is an M Γ -subgroup of G, by Theorem 2 and 3 $f^{-1}(f(H))$ is an M Γ -subgroup of G. If $a \in f^{-1}(f(H))$, then $f(a) \in f(H)$ and so f(a) = f(h) for some $h \in H$. So we have $a h \in Kerf = K$. Then, since $a \in a + K = h + K \subseteq H + K$, $f^{-1}(f(H)) \subseteq H + K$. Conversely, for any $h \in H$ and $k \in K$, since $f(h + k) = f(h) + f(k) = f(h) + 0 = f(h) \in f(H)$, $h + k \in f^{-1}(f(H))$ and so $H + K \subseteq f^{-1}(f(H))$. Therefore $f^{-1}(f(H)) = H + K$. Next, if H' is an M Γ -subgroup of G', then since f is onto mapping, $f(f^{-1}(H')) = H' \cap f(G) = H' \cap G' = H'$.
- (4) By (3), if H is an M Γ -subgroup of G containing K, $f^{-1}(f(H))$ = H + K = H. In particular, if H is an M Γ -ideal of G, then f(H) is an M Γ -ideal of G'. Also if H' is an M Γ -subgroup of G', $f(f^{-1}(H')) = H'$ and f(H') is an M Γ -ideal of G for an M Γ -ideal H' of G'. This completes the proof.

References

- G.L.Booth, Jacobson radicals of \(\Gamma\)-near-rings, Editor: B.J.Gardner Research Notes in Mathematics Series No 204, Rings, Modules and Radicals, Proceedings of Hobart Conference, Longmans, Harlow. (1987), 1-12.
- G.L.Booth and N.J.Groenewald, On radicals of Γ-near-rings, Math.Japonica 35, (1990), 417-425.
- 3 G.L.Booth and N.J.Groenewald, On radicals of Γ-near-rings, Math.Japonica 35, (1990), 887-895.
- 4. J. Lambek, Lectures on Rings and Modules, Chelsea publishing company, New York (1976)
- 5. G.Pilz, Near-Rings, revised edition, North-Holland, Amsterdam (1983).
- 6. Bh.Satyanarayana, Contribution to near-ring theory, Doctoral Thesis, Nagar-juna University (1984).

*Department of Mathematics Gyeongsang National University Chinju 660-701, Korea and ** Department of Mathematics Kyungpook Sanup University Kyungsan 712-701, Korea.