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ON A WEIGHTED MAXIMAL
MEANS OFF THE LINE ;7 =1

q

JUNG S. RHEE

One of the main topics in the harmonic analysis is the local smoothig
estimates for a certain maximal means. Elias M. Stein introduced the
spherical maximal means in his paper [5]. Also J. Bourgain showed
that there is a local smoothing estimates for Stein’s maximal means
in [1]. In recent years, Mockenhaupt, Seeger and Sogge reinforced the
local smoothing estimates of Bourgain’s circular maximal means(see
[2]) In [3], Oberlin studied Stein’s maximal estimates off the dual line
F = ;. A partial soluton of the maximal means off the line 5= % was
given by Oberlin in [3].

In this note, we will give a complete solution what Oberlin has
expected(see {3]). Actually we give a sharp estimates of a (spherical)
maximal means off the dual line for » > 3 and o > 0.

Let us define spherical means of (complex) order a by

M2 f(z) = ]R (= 5 (e~ ty)dy, £ € CR(R™),8> 0.

These means are defined for Rea > 0, but the definion can be extened
to the region Rea < 0 by analytic continuation. For Rea < 0, we
put M f(x) = me,: * f(z) given by W(m) = mg(tz)f(z) where
mal(z) = m "!'“|:r:|”__°'+1J_+0 1(27iz|), Jo is a Bessel function of
order o and m () = my( )t““ t>0,z € R".

Now we consider a maxlmal function(introduced by Oberlin-see [3]):

T2 f(2) = sup,5or? "¢ M7 f(z)],1 < p < g < co.

For n = 2, it is known that { [p.(sup,+q |M f(z)|)tdx}* < ¢ flla if
a > ~1 (see [2]). Thus we can have some estimates of operators Toa
by mterpolatmg the above result and (b) in the following theorem.
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THEOREM 1. (a) Let a« > 0 and n > 3. Then
1 Tpe fllzeazy < callfll o (rm)
if(%, %) is in the region: % > %(15 - a),% > ri;(“—;?—]— —(n—1+2a))
and 11_: <2l lg,
(b) For n = 2, the above result is true when o > 3.

COMMENT:. (a) and (b) are sharp in the sense of a necessary con-
dition for n > 2. For a = 0, see a necessary condition in [3]. For a > 0,
we can easily get the above condition using a transform in lemma 2.

The proof is based on a (Stein’s) trsnsform and interpolation theo-
rem.

LEMMA 2. Let 1 <p < ¢ < .

Seta>a'+%,a'>—§+%anda’>§:-,—%—1)+-1-.Then

n_8 o 1 [ a_s o' 1
655 | M f(a:)|50(a,a',p,q){?/; 553 M f()]%ds )

where C depends only on p,¢,a and o'.

Proof. By a (Stein’s) transform (see {S1}), we have a following cal-
culation:

2 L e e
M1 = s [ M - R
for @ > a' > —2 + 1. Then
t5 7T (M f(z)]

2 1 a_n 4 n(1—1-4.1 o =1 ol —
2 m[; (st)? =5 MY f(a)s" st aH2e=1(3 _ gPyame~1gs

, 1 % o a0 .
< Cla, o, p, q){~/ ur 1 | MY f(:v)i"du}
i o
by Holder’s inequality. Here,
Cla,o',p,q)
B { D(g(a—o =)+ DN(LR1 -1+ D+ g'a’ — 1(¢' ~ 1)) }:}r
M(g(a—a' —1)+1+ 21 - L+ Hrga - Lg-1)))
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LEMMA 3. Leta’=—n+1+§and < 2 < 1. Then

1
2

-

{[ [ et s das)’ < can,
.

for =n+1(1—l)

Proof. Consider a family of operators S, : LP(R",dz) — LI(RrRYH
,42dz) given by S, f(z,r) = o M,-%H_%f(x) for any complex
number z.

Then we have the following known results by T7*-method (see Lemma.
5 in [4]):

R n it _n 2(n+1) d 2“;11
1St (2, < { /R ) fo (T METEY ) G —:-dm}%_*%
< ca?||fll2

for some constants ¢ and a .
1tn
Since |Spque f(z,r)] = r" A MIT f(2), we can easily show that

"Sn+:¢f“L°°(Ri+l:grLdz) = CeltI”f”Ll(R")'

Hence the complex interpolation theorem gives our results. Now we
are ready to finish Theorem 1.

Proof of theorem 1. Let n > 2. By the complex interpolation theo-
rem between (0,0) and (1, co), we can see easily that

lsup 50 3 1MZ f(@)lloo < clflly if L <o and 0 < o <1.

It is known that || sup o |M? f(2)|l, < ¢l|fll, if 5 < 257+ + £ and
0 < o0 <1 by Stein’s maximal thecrem(see [5]).

In order to interpolate points in the line % + % = 1 we will use
Oberlin’s method-see [3] for n > 3.

Consider a family of operators T : LP(R") — L%(dz, L*(4C)) given
by T, f(z,r) = r‘Mf(z)f(m), where LI(dz, L*(%")) is a mixed normed

space with norm
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l .
lgllg.s = {fRn(fow lg(z,7r)|*4c)odz}?. Let p be fixed with § < % <
2=l 4 2 Put a(z) = 14 21;’:1 2 — 1). Choose € > 0 such that
e=1(n— Q:_"—I)B)
Then we obtain the following estimates by complex interpolation
and the choice of e:

IT2— 5 fllpr o0 = { (supr ™7 |MZ f(2)) dz} > < ellflly
R» >0

if‘<1<"“+§.

We will interpolate points on typediagram in the 11ne = 2ol(1— —)
Set %ﬂf—;‘# < a < 1. Lemma 2 and Lemma 3 gives:

I sup ry "M "f(w)IIIL«(m

< C{/ (sup{ |3F'"?M" F(z)|%ds}s )qd:c}

r>0
<o(f [ lsv‘vM;' f@) S da}
< Clfllr ey

. t4 1 1 nlon | a(ntl) 1 _
ifo>o te=o =070+ O andq—n_H(l )

Thus we have || sup,5q 7 # =% |M? f(z)|llg < cl[fllp for £ < 2 Tﬁ and

. = n+1(1 — %) since we can choose o < 0 such that ==ty

a{n+1) < nl-n
n241 ne41”
2Ifcr > 0 we will take @ < o such that % = %;—';-1-—% <
:,;;* + 2. Then we obtain || sup,5q 3~ % (M7 f(2)lllg < Collflls

1 nZi-n o(ntl) 1 _ n-1 1
ity <Pt oEs e = i —3)

For n = 2, we can get {[pa [5~ ir%ﬁ/fof(x)|6drdf‘”}A < Clifllz by
Lemma 2. Then we have {fR,, {sup,ve rSM f(:z)|5dx}a < Clifllz if

o > %. Thus it is natural to obtain the reults in (b) by the copy of the
prewous proof.
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