ON A WEIGHTED MAXIMAL MEANS OFF THE LINE $\frac{1}{p}=\frac{1}{q}$

Jung S. Rhee

One of the main topics in the harmonic analysis is the local smoothig estimates for a certain maximal means. Elias M. Stein introduced the spherical maximal means in his paper [5]. Also J. Bourgain showed that there is a local smoothing estimates for Stein's maximal means in [1]. In recent years, Mockenhaupt, Seeger and Sogge reinforced the local smoothing estimates of Bourgain's circular maximal means(see [2]). In [3], Oberlin studied Stein's maximal estimates off the dual line $\frac{1}{p}=\frac{1}{q}$. A partial soluton of the maximal means off the line $\frac{1}{p}=\frac{1}{q}$ was given by Oberlin in [3].

In this note, we will give a complete solution what Oberlin has expected(see [3]). Actually we give a sharp estimates of a (spherical) maximal means off the dual line for $n \geq 3$ and $\alpha \geq 0$.

Let us define spherical means of (complex) order α by

$$
M_{t}^{\alpha} f(x)=\int_{R^{n}}\left(1-|y|^{2}\right)_{+}^{\alpha-1} f(x-t y) d y, f \in C_{0}^{\infty}\left(R^{n}\right), t>0 .
$$

These means are defined for Re $\alpha>0$, but the definion can be extened to the region Re $\alpha \leq 0$ by analytic continuation. For Re $\alpha \leq 0$, we put $M_{t}^{\alpha} f(x)=m_{\alpha, t} * f(x)$ given by $\widehat{M_{t}^{\alpha}} f(x)=\widehat{m_{\alpha}}(t x) \hat{f}(x)$ where $\widehat{m_{\alpha}}(x)=\pi^{-\alpha+1}|x|^{-\frac{n}{2}-\alpha+1} J_{\frac{n}{2}+\alpha-1}(2 \pi|x|), J_{\alpha}$ is a Bessel function of order α and $m_{\alpha, t}(x)=m_{\alpha}\left(\frac{x}{t}\right) t^{-n}, t>0, x \in R^{n}$.

Now we consider a maximal function(introduced by Oberlin-see [3]):

$$
\mathcal{T}_{p, q}^{\alpha} f(x)=\sup _{r>0} r^{\frac{n}{p}-\frac{n}{q}}\left|M_{t}^{\alpha} f(x)\right|, 1 \leq p \leq q \leq \infty .
$$

For $n=2$, it is known that $\left\{\int_{R^{2}}\left(\sup _{r>0}\left|M_{t}^{\alpha} f(x)\right|\right)^{4} d x\right\}^{\frac{1}{4}} \leq c\|f\|_{4}$ if $\alpha>-\frac{1}{8}$ (see [2]). Thus we can have some estimates of operators $\mathcal{T}_{p, q}^{\alpha}$ by interpolating the above result and (b) in the following theorem.

[^0]Theorem 1. (a) Let $\alpha \geq 0$ and $n \geq 3$. Then

$$
\left\|\mathcal{T}_{p, q}^{\alpha} f\right\|_{L^{q}(d x)} \leq c_{\alpha}\|f\|_{L^{p}\left(R^{n}\right)}
$$

if $\left(\frac{1}{p}, \frac{1}{q}\right)$ is in the region: $\frac{1}{q}>\frac{1}{n}\left(\frac{1}{p}-\alpha\right), \frac{1}{q}>\frac{1}{n-1}\left(\frac{n+1}{p}-(n-1+2 \alpha)\right)$ and $\frac{1}{p}<\frac{n-1}{n}+\frac{1}{n} \alpha$.
(b) For $n=2$, the above result is true when $\alpha>\frac{1}{6}$.

Comment:. (a) and (b) are sharp in the sense of a necessary condition for $n \geq 2$. For $\alpha=0$, see a necessary condition in [3]. For $\alpha>0$, we can easily get the above condition using a transform in lemma 2.

The proof is based on a (Stein's) trsnsform and interpolation theorem.

LEMMA 2. Let $1<p \leq q<\infty$.
Set $\alpha>\alpha^{\prime}+\frac{1}{q}, \alpha^{\prime}>-\frac{n}{2}+\frac{1}{2}$ and $\alpha^{\prime}>\frac{n}{2}\left(\frac{1}{p}-\frac{1}{q}-1\right)+\frac{1}{2 q}$. Then

$$
t^{\frac{\pi}{p}-\frac{n}{q}}\left|M_{t}^{\alpha} f(x)\right| \leq C\left(\alpha, \alpha^{\prime}, p, q\right)\left\{\frac{1}{t} \int_{0}^{t}\left|s^{\frac{n}{p}-\frac{n}{q}} M_{s}^{\alpha^{\prime}} f(x)\right|^{q} d s\right\}^{1 / q}
$$

where C depends only on p, q, α and α^{\prime}.
Proof. By a (Stein's) transform (see [S1]), we have a following calculation:

$$
M_{t}^{\alpha} f(x)=\frac{2}{\Gamma\left(\alpha-\alpha^{\prime}\right)} \int_{0}^{1} M_{s t}^{\alpha^{\prime}} f(x)\left(1-s^{2}\right)^{\alpha-\alpha^{\prime}-1} s^{n+2 \alpha^{\prime}-1} d s
$$

for $\alpha>\alpha^{\prime}>-\frac{n}{2}+\frac{1}{2}$. Then

$$
\begin{aligned}
& t^{\frac{n}{p}-\frac{n}{q}}\left|M_{t}^{\alpha} f(x)\right| \\
& \leq \frac{2}{\Gamma\left(\alpha-\alpha^{\prime}\right)} \int_{0}^{1}(s t)^{\frac{n}{p}-\frac{n}{q}} M_{s t}^{\alpha^{\prime}} f(x) s^{n\left(1-\frac{1}{p}+\frac{1}{q}\right)+2 \alpha^{\prime}-1}\left(1-s^{2}\right)^{\alpha-\alpha^{\prime}-1} d s \\
& \leq C\left(\alpha, \alpha^{\prime}, p, q\right)\left\{\frac{1}{t} \int_{0}^{t} u^{\frac{n}{p}-\frac{n}{q}}\left|M_{u}^{\alpha^{\prime}} f(x)\right|^{q} d u\right\}^{\frac{1}{q}}
\end{aligned}
$$

by Hölder's inequality. Here,

$$
\begin{aligned}
& C\left(\alpha, \alpha^{\prime}, p, q\right) \\
& =\left\{\frac{\Gamma\left(q^{\prime}\left(\alpha-\alpha^{\prime}-1\right)+1\right) \Gamma\left(\frac{q^{\prime} n}{2}\left(1-\frac{1}{p}+\frac{1}{q}\right)+q^{\prime} \alpha^{\prime}-\frac{1}{2}\left(q^{\prime}-1\right)\right)}{2 \Gamma\left(q^{\prime}\left(\alpha-\alpha^{\prime}-1\right)+1+\frac{q^{\prime} n}{2}\left(1-\frac{1}{p}+\frac{1}{q}\right)+q^{\prime} \alpha^{\prime}-\frac{1}{2}\left(q^{\prime}-1\right)\right)}\right\}^{\frac{1}{q} r}
\end{aligned}
$$

Lemma 3. Let $\alpha^{\prime}=-n+1+\frac{n}{p}$ and $\frac{1}{2} \leq \frac{1}{p} \leq 1$. Then

$$
\left\{\int_{R^{n}} \int_{0}^{\infty}\left(r^{\frac{n}{p}-\frac{n}{q}}\left|M_{r}^{\alpha^{\prime}} f(x)\right|\right)^{q} \frac{d r}{r} d x\right\}^{\frac{1}{q}} \leq C\|f\|_{p}
$$

for $\frac{1}{q}=\frac{n-1}{n+1}\left(1-\frac{1}{p}\right)$.
Proof. Consider a family of operators $S_{z}: L^{p}\left(R^{n}, d x\right) \longrightarrow L^{q}\left(R_{+}^{n+1}\right.$,$\left.\frac{d r}{r} d x\right)$ given by $S_{z} f(x, r)=r^{\frac{n(z+1)}{(n+1)}} M_{r}^{\frac{z}{2}+1-\frac{n}{2}} f(x)$ for any complex number z.
Then we have the following known results by $T T^{*}$-method (see Lemma 5 in [4]):

$$
\begin{aligned}
\left\|S_{2 t} f(x, r)\right\|_{2} & \leq\left\{\int_{R^{n}} \int_{0}^{\infty}\left(r^{\frac{n}{(n+1)}}\left|M_{r^{\frac{1 t}{2}-\frac{n}{2}+1}} f(x)\right|\right)^{\frac{2(n+1)}{(n-1)}} \frac{d r}{r} d x\right\}^{\frac{(n-1)}{2(n+1)}} \\
& \leq c a^{\frac{\mid t 1}{2}}\|f\|_{2}
\end{aligned}
$$

for some constants c and a.
Since $\left|S_{n+i t} f(x, r)\right|=r^{n+\frac{1 t n}{n+i}} M_{r}^{1+\frac{i t}{2}} f(x)$, we can easily show that

$$
\left\|S_{n+t} f\right\|_{L^{\infty}\left(R_{+}^{n+1}, \frac{d \gamma}{\tau} d x\right)} \leq c e^{|t|}\|f\|_{L^{1}\left(R^{n}\right)} .
$$

Hence the complex interpolation theorem gives our results. Now we are ready to finish Theorem 1.

Proof of theorem 1. Let $n \geq 2$. By the complex interpolation theorem between $(0,0)$ and $(1, \infty)$, we can see easily that
$\left\|\sup _{r>0} r^{\frac{n}{p}}\left|M_{r}^{\sigma} f(x)\right|\right\|_{\infty} \leq c\|f\|_{p}$ if $\frac{1}{p}<\sigma$ and $0<\sigma<1$.
It is known that $\left\|\sup _{r>0}\left|M_{r}^{\sigma} f(x)\right|\right\|_{p} \leq c\|f\|_{p}$ if $\frac{1}{p}<\frac{n-1}{n}+\frac{\sigma}{n}$ and $0<\sigma<1$ by Stein's maximal thecrem(see [5]).

In order to interpolate points in the line $\frac{1}{p}+\frac{1}{q}=1$ we will use Oberlin's method-see [3] for $n \geq 3$.

Consider a family of operators $T_{z}: L^{p}\left(R^{n}\right) \longrightarrow L^{q}\left(d x, L^{s}\left(\frac{d r}{r}\right)\right)$ given by $T_{z} f(x, r)=r^{z} M_{r}^{\alpha(z)} f(x)$, where $L^{q}\left(d x, L^{s}\left(\frac{d r}{r}\right)\right)$ is a mixed normed space with norm
$\|g\|_{q, s}=\left\{\int_{R^{n}}\left(\int_{0}^{\infty}|g(x, r)|^{\frac{d}{r}} \frac{d r}{r}\right)^{\frac{g}{d}} d x\right\}^{\frac{1}{q}}$. Let p be fixed with $\frac{1}{2} \leq \frac{1}{p}<$ $\frac{n-1}{n}+\frac{\sigma}{n}$. Put $\alpha(z)=1+\frac{(1-\sigma) p}{2(p-1)}\left(\frac{z}{n}-1\right)$. Choose $\epsilon>0$ such that $\epsilon=\frac{1}{2}\left(n-\frac{(1-\sigma) p}{p-1}\right)$.

Then we obtain the following estimates by complex interpolation and the choice of ϵ :

$$
\left\|T_{\frac{n}{p}-\frac{n}{p^{\prime}}} f\right\|_{p^{\prime}, \infty}=\left\{\int_{R^{n}}\left(\sup _{r>0} r^{\frac{n}{p}-\frac{n}{p^{\prime}}}\left|M_{r}^{\sigma} f(x)\right|\right)^{p^{\prime}} d x\right\}^{\frac{1}{p^{\prime}}} \leq c\|f\|_{p}
$$

if $\frac{1}{2} \leq \frac{1}{p}<\frac{n-1}{n}+\frac{\sigma}{n}$.
We will interpolate points on typediagram in the line $\frac{1}{q}=\frac{n-1}{n+1}\left(1-\frac{1}{p}\right)$. Set $\frac{-n^{2}+2 n+1}{2(n+1)} \leq \alpha \leq 1$. Lemma 2 and Lemma 3 gives:

$$
\begin{aligned}
& \left\|\sup _{r>0} r^{\frac{n}{p}-\frac{n}{q}}\left|M_{r}^{\sigma} f(x)\right|\right\|_{L^{q}\left(R^{n}\right)} \\
& \leq C\left\{\int_{R^{n}}\left(\sup _{r>0}\left\{\frac{1}{r} \int_{0}^{r}\left|s^{\frac{n}{p}-\frac{n}{q}} M_{s}^{\sigma^{\prime}} f(x)\right|^{q} d s\right\}^{\frac{1}{q}}\right)^{q} d x\right\}^{\frac{1}{q}} \\
& \leq C\left\{\int_{R^{n}} \int_{0}^{\infty}\left|s^{\frac{n}{p}-\frac{n}{q}} M_{s}^{\sigma^{\prime}} f(x)\right|^{q} \frac{d s}{s} d x\right\}^{\frac{1}{q}} \\
& \leq C\|f\|_{L^{p}\left(R^{n}\right)}
\end{aligned}
$$

if $\sigma>\sigma^{\prime}+\frac{1}{q}=\alpha, \frac{1}{p}=\frac{n^{2}-n}{n^{2}+1}+\frac{\alpha(n+1)}{n^{2}+1}$ and $\frac{1}{q}=\frac{n-1}{n+1}\left(1-\frac{1}{p}\right)$.
Thus we have $\left\|\sup _{r>0} r^{\frac{n}{p}-\frac{n}{4}}\left|M_{r}^{0} f(x)\right|\right\|_{q} \leq c\|f\|_{p}$ for $\frac{1}{p}<\frac{n^{2}-n}{n^{2}+1}$ and $\frac{1}{q}=\frac{n-1}{n+1}\left(1-\frac{1}{p}\right)$ since we can choose $\alpha<0$ such that $\frac{1}{p}=\frac{n^{2}-n}{n^{2}+1}+$ $\frac{\alpha(n+1)}{n^{2}+1}<\frac{n^{2}-n}{n^{2}+1}$.

If $\sigma>0$ we will take $\alpha<\sigma$ such that $\frac{1}{p}=\frac{n^{2}-n}{n^{2}+1}+\frac{\alpha(n+1)}{n^{2}+1}<$ $\frac{n^{2}-n}{n^{2}+1}+\frac{\sigma(n+1)}{n^{2}+1}$. Then we obtain $\left\|\sup _{r>0} r^{\frac{n}{p}-\frac{n}{q}}\left|M_{r}^{\sigma} f(x)\right|\right\|_{q} \leq C_{\sigma}\|f\|_{p}$ if $\frac{1}{p}<\frac{n^{2}-n}{n^{2}+1}+\frac{\sigma(n+1)}{n^{2}+1}, \frac{1}{q}=\frac{n-1}{n+1}\left(1-\frac{1}{p}\right)$.

For $n=2$, we can get $\left\{\int_{R^{n}} \int_{0}^{\infty}\left|r^{\frac{2}{3}} M_{r}^{0} f(x)\right|^{6} \frac{d r}{r} d x\right\}^{\frac{2}{6}} \leq C\|f\|_{2}$ by Lemma 2. Then we have $\left\{\int_{R^{n}}\left|\sup _{r>0} r^{\frac{2}{3}} M_{r}^{\sigma} f(x)\right|^{6} d x\right\}^{\frac{1}{6}} \leq C\|f\|_{2}$ if $\sigma>\frac{1}{6}$. Thus it is natural to obtain the reults in (b) by the copy of the previous proof.

Acknowledgements

I am very grateful to Professor Oberlin for his comments and the suggestion of this problem.

References

1. J. Bourgain, Averages in the plane over convex curves and maxtmal operators, J. Analyse Math. 47 (1986), 69-85..
2. Mockenhaupt, G., Seeger, A., and Sogge, C. D., Wave front sets, local smoothing and Bourgain's circular maximal theorem, Annals Math 136 (1992), 207-218.
3. D. Oberlin, Operators interpolating between Riesz potentials and maximal operators, Illinois J. Math. 33 (1989), 143-152.
4. Oberlin, Convolution estzmates for some distributzons with singularitzes on the lzght cone, Duke Math. J. 59 (1989), 747-757.
5. E. Stein, Maximal functzons: spherical means, Proc Nat. Acad. Sci. 73 (1976), 2174-2175.

DEPARTMENT OF MATHEMATICS PUSAN UNIVERSITY OF FOREIGN STUDIES,55-1 UAMDONG, NAMKU, PUSAN 608-738, KOREA
e-mail: rhee@taejo.pufs.ac.kr

[^0]: Received February 2, 1996.

