## ON A WEIGHTED MAXIMAL MEANS OFF THE LINE $\frac{1}{p} = \frac{1}{q}$

## JUNG S. RHEE

One of the main topics in the harmonic analysis is the local smoothig estimates for a certain maximal means. Elias M. Stein introduced the spherical maximal means in his paper [5]. Also J. Bourgain showed that there is a local smoothing estimates for Stein's maximal means in [1]. In recent years, Mockenhaupt, Seeger and Sogge reinforced the local smoothing estimates of Bourgain's circular maximal means(see [2]). In [3], Oberlin studied Stein's maximal estimates off the dual line  $\frac{1}{p} = \frac{1}{q}$ . A partial solution of the maximal means off the line  $\frac{1}{p} = \frac{1}{q}$  was given by Oberlin in [3].

In this note, we will give a complete solution what Oberlin has expected(see [3]). Actually we give a sharp estimates of a (spherical) maximal means off the dual line for  $n \geq 3$  and  $\alpha \geq 0$ .

Let us define spherical means of (complex) order  $\alpha$  by

$$M_t^{\alpha} f(x) = \int_{\mathbb{R}^n} (1 - |y|^2)_+^{\alpha - 1} f(x - ty) dy, f \in C_0^{\infty}(\mathbb{R}^n), t > 0.$$

These means are defined for  $Re\alpha > 0$ , but the definion can be extened to the region  $Re\alpha \leq 0$  by analytic continuation. For  $Re\alpha \leq 0$ , we put  $M_t^{\alpha} f(x) = m_{\alpha,t} * f(x)$  given by  $\widehat{M_t^{\alpha} f}(x) = \widehat{m_{\alpha}}(tx)\widehat{f}(x)$  where  $\widehat{m_{\alpha}}(x) = \pi^{-\alpha+1}|x|^{-\frac{n}{2}-\alpha+1}J_{\frac{n}{2}+\alpha-1}(2\pi|x|)$ ,  $J_{\alpha}$  is a Bessel function of order  $\alpha$  and  $m_{\alpha,t}(x) = m_{\alpha}(\frac{x}{t})t^{-n}$ , t > 0,  $x \in \mathbb{R}^n$ .

Now we consider a maximal function(introduced by Oberlin-see [3]):

$$\mathcal{T}_{p,q}^{\alpha}f(x) = \sup_{\tau>0} r^{\frac{n}{p} - \frac{n}{q}} |M_t^{\alpha}f(x)|, 1 \le p \le q \le \infty.$$

For n=2, it is known that  $\{\int_{R^2} (\sup_{r>0} |M_t^{\alpha} f(x)|)^4 dx\}^{\frac{1}{4}} \leq c \|f\|_4$  if  $\alpha > -\frac{1}{8}$  (see [2]). Thus we can have some estimates of operators  $\mathcal{T}_{p,q}^{\alpha}$  by interpolating the above result and (b) in the following theorem.

Received February 2, 1996.

THEOREM 1. (a) Let  $\alpha \geq 0$  and  $n \geq 3$ . Then

$$\|T_{p,q}^{\alpha}f\|_{L^{q}(dx)} \leq c_{\alpha}\|f\|_{L^{p}(\mathbb{R}^{n})}$$

if  $(\frac{1}{p},\frac{1}{q})$  is in the region:  $\frac{1}{q} > \frac{1}{n}(\frac{1}{p}-\alpha), \frac{1}{q} > \frac{1}{n-1}(\frac{n+1}{p}-(n-1+2\alpha))$  and  $\frac{1}{p} < \frac{n-1}{n} + \frac{1}{n}\alpha$ .

(b) For n=2, the above result is true when  $\alpha > \frac{1}{6}$ .

COMMENT:. (a) and (b) are sharp in the sense of a necessary condition for  $n \geq 2$ . For  $\alpha = 0$ , see a necessary condition in [3]. For  $\alpha > 0$ , we can easily get the above condition using a transform in lemma 2.

The proof is based on a (Stein's) transform and interpolation theorem.

LEMMA 2. Let 
$$1 .
Set  $\alpha > \alpha' + \frac{1}{q}, \alpha' > -\frac{n}{2} + \frac{1}{2}$  and  $\alpha' > \frac{n}{2} (\frac{1}{p} - \frac{1}{q} - 1) + \frac{1}{2q}$ . Then
$$t^{\frac{n}{p} - \frac{n}{q}} |M_t^{\alpha} f(x)| \le C(\alpha, \alpha', p, q) \left\{ \frac{1}{t} \int_0^t |s^{\frac{n}{p} - \frac{n}{q}} M_s^{\alpha'} f(x)|^q ds \right\}^{1/q}$$$$

where C depends only on  $p, q, \alpha$  and  $\alpha'$ .

*Proof.* By a (Stein's) transform (see [S1]), we have a following calculation:

$$M_t^{\alpha} f(x) = \frac{2}{\Gamma(\alpha - \alpha')} \int_0^1 M_{st}^{\alpha'} f(x) (1 - s^2)^{\alpha - \alpha' - 1} s^{n + 2\alpha' - 1} ds$$

for  $\alpha > \alpha' > -\frac{n}{2} + \frac{1}{2}$ . Then

$$t^{\frac{n}{p}-\frac{n}{q}}|M_t^\alpha f(x)|$$

$$\leq \frac{2}{\Gamma(\alpha - \alpha')} \int_0^1 (st)^{\frac{n}{p} - \frac{n}{q}} M_{st}^{\alpha'} f(x) s^{n(1 - \frac{1}{p} + \frac{1}{q}) + 2\alpha' - 1} (1 - s^2)^{\alpha - \alpha' - 1} ds$$

$$\leq C(\alpha,\alpha',p,q)\Big\{\frac{1}{t}\int_0^t u^{\frac{n}{p}-\frac{n}{q}}|M_u^{\alpha'}f(x)|^qdu\Big\}^{\frac{1}{q}}$$

by Hőlder's inequality. Here,

$$C(\alpha, \alpha', p, q)$$

$$= \left\{ \frac{\Gamma(q'(\alpha-\alpha'-1)+1)\Gamma(\frac{q'n}{2}(1-\frac{1}{p}+\frac{1}{q})+q'\alpha'-\frac{1}{2}(q'-1))}{2\Gamma(q'(\alpha-\alpha'-1)+1+\frac{q'n}{2}(1-\frac{1}{p}+\frac{1}{q})+q'\alpha'-\frac{1}{2}(q'-1))} \right\}^{\frac{1}{q'}}.$$

LEMMA 3. Let  $\alpha' = -n + 1 + \frac{n}{p}$  and  $\frac{1}{2} \le \frac{1}{p} \le 1$ . Then

$$\left\{\int_{R^n}\int_0^\infty (r^{\frac{n}{p}-\frac{n}{q}}|M_r^{\alpha'}f(x)|)^q\frac{dr}{r}dx\right\}^{\frac{1}{q}}\leq C\|f\|_p$$

for  $\frac{1}{q} = \frac{n-1}{n+1}(1-\frac{1}{p})$ .

*Proof.* Consider a family of operators  $S_z: L^p(\mathbb{R}^n, dx) \longrightarrow L^q(\mathbb{R}^{n+1}_+)$ 

 $\frac{dr}{r}dx$  given by  $S_z f(x,r) = r^{\frac{n(z+1)}{(n+1)}} M_r^{\frac{z}{2}+1-\frac{n}{2}} f(x)$  for any complex number z.

Then we have the following known results by  $TT^*$ -method (see Lemma 5 in [4]):

$$||S_{it}f(x,r)||_{2} \leq \left\{ \int_{\mathbb{R}^{n}} \int_{0}^{\infty} \left(r^{\frac{n}{(n+1)}} |M_{r}^{\frac{it}{2} - \frac{n}{2} + 1} f(x)|\right)^{\frac{2(n+1)}{(n-1)}} \frac{dr}{r} dx \right\}^{\frac{(n-1)}{2(n+1)}} \leq ca^{\frac{|t|}{2}} ||f||_{2}$$

for some constants c and a.

Since  $|S_{n+it}f(x,r)| = r^{n+\frac{itn}{n+1}}M_r^{1+\frac{it}{2}}f(x)$ , we can easily show that

$$||S_{n+it}f||_{L^{\infty}(R^{n+1}_+,\frac{dr}{r}dx)} \le ce^{|t|}||f||_{L^1(R^n)}.$$

Hence the complex interpolation theorem gives our results. Now we are ready to finish Theorem 1.

Proof of theorem 1. Let  $n \ge 2$ . By the complex interpolation theorem between (0,0) and  $(1,\infty)$ , we can see easily that

$$\|\sup_{r>0} r^{\frac{n}{p}} |M_r^{\sigma} f(x)|\|_{\infty} \le c \|f\|_p \text{ if } \frac{1}{p} < \sigma \text{ and } 0 < \sigma < 1.$$

It is known that  $\|\sup_{r>0} |M_r^{\sigma} f(x)|\|_p \le c \|f\|_p$  if  $\frac{1}{p} < \frac{n-1}{n} + \frac{\sigma}{n}$  and  $0 < \sigma < 1$  by Stein's maximal theorem(see [5]).

In order to interpolate points in the line  $\frac{1}{p} + \frac{1}{q} = 1$  we will use Oberlin's method-see [3] for  $n \ge 3$ .

Consider a family of operators  $T_z: L^p(\mathbb{R}^n) \longrightarrow L^q(dx, L^s(\frac{dr}{r}))$  given by  $T_z f(x,r) = r^z M_r^{\alpha(z)} f(x)$ , where  $L^q(dx, L^s(\frac{dr}{r}))$  is a mixed normed space with norm

 $||g||_{q,s} = \left\{ \int_{\mathbb{R}^n} (\int_0^\infty |g(x,r)|^s \frac{dr}{r})^{\frac{s}{s}} dx \right\}^{\frac{1}{q}}. \text{ Let } p \text{ be fixed with } \frac{1}{2} \leq \frac{1}{p} < \frac{n-1}{n} + \frac{\sigma}{n}. \text{ Put } \alpha(z) = 1 + \frac{(1-\sigma)p}{2(p-1)}(\frac{z}{n}-1). \text{ Choose } \epsilon > 0 \text{ such that } \epsilon = \frac{1}{2}(n - \frac{(1-\sigma)p}{p-1}).$ 

Then we obtain the following estimates by complex interpolation and the choice of  $\epsilon$ :

$$\begin{split} \|T_{\frac{n}{p}-\frac{n}{p'}}f\|_{p',\infty} &= \big\{\int_{R^n} (\sup_{r>0} r^{\frac{n}{p}-\frac{n}{p'}} |M_r^{\sigma}f(x)|)^{p'} dx \big\}^{\frac{1}{p'}} \leq c \|f\|_p \\ &\text{if } \tfrac{1}{2} \leq \tfrac{1}{p} < \tfrac{n-1}{n} + \tfrac{\sigma}{n}. \end{split}$$

We will interpolate points on typediagram in the line  $\frac{1}{q} = \frac{n-1}{n+1}(1-\frac{1}{p})$ . Set  $\frac{-n^2+2n+1}{2(n+1)} \le \alpha \le 1$ . Lemma 2 and Lemma 3 gives:

$$\begin{split} &\|\sup_{r>0} r^{\frac{n}{p} - \frac{n}{q}} |M_{r}^{\sigma} f(x)| \|_{L^{q}(R^{n})} \\ &\leq C \Big\{ \int_{R^{n}} (\sup_{r>0} \{\frac{1}{r} \int_{0}^{r} |s^{\frac{n}{p} - \frac{n}{q}} M_{s}^{\sigma'} f(x)|^{q} ds \}^{\frac{1}{q}})^{q} dx \Big\}^{\frac{1}{q}} \\ &\leq C \Big\{ \int_{R^{n}} \int_{0}^{\infty} |s^{\frac{n}{p} - \frac{n}{q}} M_{s}^{\sigma'} f(x)|^{q} \frac{ds}{s} dx \Big\}^{\frac{1}{q}} \\ &\leq C \|f\|_{L^{p}(R^{n})} \end{split}$$

if 
$$\sigma > \sigma' + \frac{1}{q} = \alpha$$
,  $\frac{1}{p} = \frac{n^2 - n}{n^2 + 1} + \frac{\alpha(n+1)}{n^2 + 1}$  and  $\frac{1}{q} = \frac{n-1}{n+1}(1 - \frac{1}{p})$ .

Thus we have  $\|\sup_{r>0} r^{\frac{n}{p}-\frac{n}{q}} |M^0_r f(x)|\|_q \le c \|f\|_p$  for  $\frac{1}{p} < \frac{n^2-n}{n^2+1}$  and  $\frac{1}{q} = \frac{n-1}{n+1} (1-\frac{1}{p})$  since we can choose  $\alpha < 0$  such that  $\frac{1}{p} = \frac{n^2-n}{n^2+1} + \frac{\alpha(n+1)}{n^2+1} < \frac{n^2-n}{n^2+1}$ .

If  $\sigma>0$  we will take  $\alpha<\sigma$  such that  $\frac{1}{p}=\frac{n^2-n}{n^2+1}+\frac{\alpha(n+1)}{n^2+1}<\frac{n^2-n}{n^2+1}+\frac{\sigma(n+1)}{n^2+1}.$  Then we obtain  $\|\sup_{r>0}r^{\frac{n}{p}-\frac{n}{q}}|M_r^{\sigma}f(x)|\|_q\leq C_{\sigma}\|f\|_p$  if  $\frac{1}{p}<\frac{n^2-n}{n^2+1}+\frac{\sigma(n+1)}{n^2+1},\frac{1}{q}=\frac{n-1}{n+1}(1-\frac{1}{p}).$ 

For n=2, we can get  $\{\int_{R^n} \int_0^\infty |r^{\frac{2}{8}} M_r^0 f(x)|^6 \frac{dr}{r} dx\}^{\frac{1}{6}} \leq C \|f\|_2$  by Lemma 2. Then we have  $\{\int_{R^n} |\sup_{r>0} r^{\frac{2}{3}} M_r^{\sigma} f(x)|^6 dx\}^{\frac{1}{6}} \leq C \|f\|_2$  if  $\sigma > \frac{1}{6}$ . Thus it is natural to obtain the reults in (b) by the copy of the previous proof.

## Acknowledgements

I am very grateful to Professor Oberlin for his comments and the suggestion of this problem.

## References

- J. Bourgain, Averages in the plane over convex curves and maximal operators,
   J. Analyse Math. 47 (1986), 69-85..
- 2. Mockenhaupt, G., Seeger, A., and Sogge, C. D., Wave front sets, local smoothing and Bourgain's circular maximal theorem, Annals Math 136 (1992), 207-218.
- 3. D. Oberlin, Operators interpolating between Riesz potentials and maximal operators, Illinois J. Math. 33 (1989), 143-152.
- 4. Oberlin, Convolution estimates for some distributions with singularities on the light cone, Duke Math. J. 59 (1989), 747-757.
- E. Stein, Maximal functions: spherical means, Proc Nat. Acad. Sci. 73 (1976), 2174-2175.

DEPARTMENT OF MATHEMATICS PUSAN UNIVERSITY OF FOREIGN STUDIES,55-1 UAMDONG, NAMKU, PUSAN 608-738, KOREA

e-mail: rhee@taejo.pufs.ac.kr