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OPTIMAL ERROR ANALYSIS OF ^HE 
P-VERSION UNDER QUADRATURE RULES

Ik-Sung Kim

1. Introduction

Let Q be a closed and bounded polygonal domain in J?2, or a 
closed line segment in H1 with boundary such that there exists an 
invertible mapping 7* : Q —> Q with the following correspondence:

(1.1) x G Q <——> x = T(x) E Q, 
and
(1.2) t e ug) — £ =私 L £ 4(Q),

where Q denotes the corresponding reference elements I = [—1,1] and 
/ x Z in R? and JR2 respectively,

(1.3) (酒

= { £ : t is a polynomial of degree < p in each variable on (2 }, 
and
(1.4) U，(Q) = 3 : 海)}.

We introduce Sobolev spaces
(1.5) HmyQ) 三 The completion of {u G Cm(Q) : ||이<。아， 

equipped with norm
(L6) II 에 = ( £ l@ 메 5") if

\0<|i|<m /

(L7) II이= max ||51?z||q)oo)j7, 
o<hl<^

where || • ||O j) is the usual Lp(Q)-nonn, and the subscript p may be 
dropped when p = 2.

Received January 29,1996.

7



8 Ik-Sung Kim

Now we define a space = (u € Hm(Q) : u vanishes on
and consider the following model problem of non-constant coefficient 
elliptic equations:

Our model problem is to find u G such that

(1.8) 一 div(aVu) = f in ft C
(1.9) -土/籌in QCR1.

Here, for sake of simplicity to ensure a solution exists we assume

(1.10) 0 < Aj < a(x) < A2 for all a: € Q,
and
(1.11) f € 乙2(Q).

In addition, we also assume that there exists a constant A sudi that

(1-12) ||T||j,8,C ， for 0<j<M,

(1.13) II 히 L,8金 , II 亍Tig 危 4 for 0<j<M-l,

where J and J"1 denote the Jacobians of T and 꼬—고 respectively, 
and M > 1. We note that M must be large enough to ensure that 
the domain Q is not too distorted, i.e., T is smooth. For non-smooth 
mappings, (1.12) and (1.13) can still hold, but the constant A may be 
very large.
By (1.12) and (1.13), as seen in theorem 4.3.2 of [6], we obtain the 
following conrespondence:
For any a G [1, oo], 0 < < M,

(1.14) te e W°(Q)

with norm equivalence

(L15) G||t|农5 < II히財庭档 이I히以"・

Our problem (1.8)-(1.9) may be approximated by several numerical 
methods. In this paper we are interested in the p-version of the fi­
nite element method. The classical form of the finite element method, 
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called the /x-version, uses piecewise polynomials of a fixed degree p and 
decreases the mesh-size h to achieve accuracy. In the /^version, a fixed 
mesh is used while the degree p is increased for greater accuracy. The 
h—p version is a combination of both. The standard ^-version has been 
thoroughly investigated. But the p- and h — p versions axe recent de­
velopments. A survey of the p -version's computational and theoretical 
characteristics may be found in [3]. Here, when we use the p-version 
of the finite element method without subdividing Q the discrete vari­
ational form of (1.8)-(1.9) is to find up € S"(Q) satisfying

(1.16) B(up,Vp) = (/, vp)n for all 아 € Sp,o(Q), 
where

(1.17) v) = I aVu - Vv dx,

(1.18) = [ fvdx,
Jq 

and
(1.19) &o(Q) = %(Q) Cl 琨(Q).

In [2] and [8], M. Suri obtained optimal error-estimates

(1.20) \\u - Up||0)n < CP-I||u - 2시liq

and

(1-21) |g — z니kq 메f for all u G r > 1.

But, the above results follow under the assumption that T is a suffi­
ciently smooth mapping and all integrations in(1.16) are performed ex­
actly. In practice, the integrals in (1-16) are seldom computed exactly. 
To compute the integrals in the variational form (1.16) of the discrete 
problem we need the numerical quadrature rule scheme. In this paper, 
when some numerical quadrature rules are used for calculating the in­
tegrations in the stiffness matrix and the load vector of (1.16) we give 
it용 variational form and derive the estimates of u — up in the •乙2(。)~ and 

where up is an approximation satisfying (2.5). In. [7], the 
spectral element method has been introduced and Y. Maday point out 
the cases where overintegrations would be required. We also analyze 
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the cases in which the overintegration may improve the accuracy of the 
approximation to allow for optimal results. In particular, we observe 
more general mapping 71 : Q t Q without subdividing the domain. 
Q, This may have influence on the smoothness of the integrands in the 
variational form. Using Gauss-Legendre(G-L) quadrature rules some 
numerical experiments confirm the results.

2. Preliminaries

We consider numerical quadrature rules Ik defined on the reference 
element Q by

(2.1)
끼幻 广

a(/)= £成有(玲~ lf(x)dx, 
2=1 R

where k is a positive integer. Let Gp = {&} be a family of quadrature 
rules Ik with respect to %(Q), p = 1,2,3, • • •, satisfying the following 
properties:

(Kl)
(K2)

(K3)

For each € Gp,
務f > 0 and E Q for z = 1, • - ■ , n(fc).
砒笋)京시 Sl 爲 for all feUp(^).

이I血爲 W如■广) for all •荏 如C), 

where 沃(庄)={礬：往 J7p(Q) } C 马，曲. 

九(f) = fa f(可庞 for all f G 1妇住)(金)， 

where d(k) > d(p) > 0.
We also get a family GPiq = {4q} of numerical quadrature rules with 
respect to L7p(Q), which axe defined on Q by

(K4)

끼/0 n(k)
(2.2) Zfc,n(/) = £ m 打(时)=£ / o T)(砰)=Ik(Jf).

1=1 d= 고

Now, we denote by DF the nxn Jacobian matrix of F : R" Kn, 
and define two discrete inner products
(2.3) («, on Q,

(2.4) (u, = I((uv) on fi.
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Then, using quadrature rules Im and Ii in Gp we obtain the follow­
ing actual problem of(1.16): To find up £ S\o(Q), such that

(2.5) = (£ "jJ’Q 하p €
where
(2.6) Bm,技角，,이 = 爲] (混,棗，籍 ) 搭

(2.7) (/，々)顷=(J f 注p)iQ〉

and aij denote the entries of the matrix J(DT-1) (DT-1).

The following Leminas will be used later

Lemma 2.1. For each integer I >0, there exists a sequence of pro­
jections

叫:H'(Q) t Up(Q), p = 1,2,3, • ■ •, such that

(2.8) IIpVp = vp for all vp E UP(Q),
(2-9) 臍 —피지蒔 VCpTi)||헤爾 for all £ £ 欧俭) 

with 0 < s < I < r.

Proof. See [8, Lemma 3.1].

Lemma 2.2. There exists a sequence of projections
Pp : Hg(Q) 一어 &o(Q), p= 1,2,3,• • •, such that

(2.10) W —P；메麟 京3一(1)||이I財 {or all u e Hr^ 
with 0 < 5 < 1 < r.

Proof. See [8, Theorem 4.2].

LEMMA 2.3. For Q C Rn, let u E H%Q) with s > n. Then the 
projection from Lemma 21 satisfies

(2-n) 皿 一 邱에。,。顼 -切岡浦.

Proof. By interpolation results ( 욥ee [5, Theorem 3.2 ] and [ 4, 
Theorem 6.2.4 ] ) we have that
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(2.12) II『邱히I。,°。,◎ < 이隹-邱헤丄插I"啞II,顼

for 0 < € < |.

We also have from Lemma 2.1 that

(2-13) 11疝一邓히扁 V C*Tt)||헤顼 for 0<r<n<5.

Hence, taking with 尸 = 으 + & and 尸 = 買 一 & in (2.13) we obtain 
阳-邱지I,顼脸-n;헤丄顼 < c치)Il헤顼, 

which completes the proof from (2.12).

3. Error estimates under numerical quadrature rules and 
mappings

First we shall estimate ||u — Up^ n which depends on several sep­
arate terms. The first dependence is on the error ||u —1세] q with 
respect to the mapping T. Next, the error will depend upon the 
smoothness of a, and f with the Jacobian J of T.

LEMMA 3.1. Let u be the exact s시ufig of (1.8)-(L9) and up an 
approximation of u which satisfies (2.5), Then there exists a constant 
C independent of m, I such that

(3.1) li« -«pII1)£2 < C[ 驶 세u-?시|財
으"(요) '

|5(uy, ^p)l 1
璀扁) 林3 }

, - (£粉扁|
+ sup --------- ii一一ii------------- J-

wpGSp,o(ft) ll^lll.Q

Proof. It is similar to the technique in [6, Theorem 4.1.1 ].

In Lemma 3.1, the third factor that ||u 一赤现]n depends upon is 
the smoothness of f and J with the mapping T. In this connec­
tion, we shall use the following Lemma.
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LEMMA 3.2. Let II E Gp be a quadrature rule on Q C R" which 
satisfies d(l) — p — 1 > 0, and let f e 目，(Q) and J G with 
min(7, > n. Then, for any wp E S》,o(Q) we have the following 
estimate

Zo q\ — (/, wp)z
E 御蒔

｛厂s 플)||孔企세게。,。顼 + 仃IIG

+ (如)—p—旷(F)||R| 饵(||孔,8,金+价海)｝，

where q is a positive integer with d(l) — p — q > 0 and C is inde­
pendent of Z, p and q.

Proof. Since d(l) 一 p — 1 > 0 there exists a positive integer q 
such that d(Z) — p — q > 0. For arbitrary € Ud(i)_p-q(Q) and 
w2 G %(Q) we let w — wi W2 € U趴)_p(Q). Then, due to (K4) it 
follows that

(3.3) (w, wp)^ - (w,每)会=0.

Since (/,wp)n =(JJ,wp)^ and (了,後p),Q =(丿£凹>)成

(3.4) |(/,wp)n -(f,wp)/n|
< I (万上毎后 -(疔，泣p)招 + 1(疔，砌质 -(万，成机시・

By the Schwarz inequality we obtain

(3.5) |(乓並童 — 顷,每)시，、

< |0・£一 7疔2, 每)C I + 1(7^2 —肪疔2, 每)시

V |p(7- 疔2)||o金 II迅11(盘 + 11(7- 论)?이Io,© ll^pllo.Q

< 이1히1*疗一成시1。,。南 + 仃一御|。,8,誼이1康)1际，11(项 •

Taking w± = TL^_p_q(J) and w2 = H?(f) in Lemma 2.3 we 
have

(3.6) 
and

疗-이Io,8,◎ < Cq-^\\f\\^ ,
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(3-7) 仃一疔ill。,。爾 < C"⑴一p — 플)II히I演 •

Moreover, by the triangle inequality and from Lemma 2.1

(3.8) II疔2||爾 < ll/llo.n + I|7-^2|Io,q

<C{\\f\\^+q-^\f\\^}
< 이Sl侦，

and obviously
(3.9) llRloG < C\\J\\S^ .

Hence, by substituting the above results in (3.5) we have

(3.10) \(Jf,wp)^-(w,wp)^\
< C{厂s-믈) + rn-p-플)}ILflL揷仃岫IB이启•

Similarly, we can estimate the last term of the right side in (3.4), which 
can be rewritten as

(3.11) I (J £ 每扁-(w,每扁 I
< 1(万总扁 一仃疔2, 每)7,시 + 1(7疔2,每)侦 -(価疔2,每扁 I 
=1(1尸一疔2),每，)侦 I + |(w2(<7-w1),wp)/^|.

Using the Schwarz inequality, we have from (3.6) and (K2) that

(3.12) |(成疔2), 每，)7,시 < (J(/ - w2), J(/ - w2))^ (wp, wp)L

V 이I히|。,8,시If T이log시"静 '

京‘厂(1忻||海1凤,。危11御康•

Moreover, from (3.6) and (3.7) we also obtain

(3.13) |(疔犬，一肪)，疔折侦I

<(W2(<7 - W1),W2(J- W1))^ (wp,wp)^
V 에에。,8,시極이I。,8,시阿，Ike '
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< - 昉 llo,8,C 세 fll。,。顼 + II/- 命2||°,。项) II 御康
< C{m-P-g)WT)|团|待 ||f||y孫 II御孺
+ (热)-p-g)T7)厂M)II기I頌 ||f|成 脚pH。,© }•

Hence, combining (3.12) and (3.13) we estimate

(3.14) 1(万，迅)m - (痂雨)m I
< c{「&T)||히"。,시iflL揷
+ (如) 一，一 9厂缶플)II히I演 ||月"顼

+厂(1)(如)-p-g)—g 믈) II히I糖 iSl浦 } II御康 .

Since the last term of the right side in (3.14) is dominated by the 
terms in (3.10) we derive

(3.15) |(/,wp)n -(/,wp),n|
< c{gTi)||f廉세丸,8,金 + 仃IIG

+ (如-p-q)TF)ll히I海세孔,8,"lSL播}II為I扇 •

It is obvious from (1.15) that

(3.16) ||wPi|OiS < 이I神盘 < 이"kq •

The Lemma follows from dividing with ||凹』］q .

Now, we give the following Lemma which can be used for estimating 
the middle term in (3.1).

Lemma 3.3. Let Up, Wp E and f E •乙8(Q)・ Then, for all 
Vq G Uq(Q), fr E Z7r(12) with 0 < q < p and r = J(m) — p — q > 0 
we have

⑶⑺ 丨(為3範-(角，,祠扁I

< c시肩。,。。,시同，-에康 + 11声£||。,8,세御康}阿岫， 

where C is independent of p, q and m.

Proof. For any fr € U尸(Q) we have
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(3.18) I (代少務p)° - (fupi 每，)“盘 I

V I (/ upi wp)Q (fr^pr wp)Q I + I (frupjwp)Q ~ I

+ I (frupjwp)mfQ _ (/up, Wp)m J •

Thank to (K4),

(3.19) (frVg,wp)^ -(frVq,wp)m ^ = 0 for any vq e 17,(0).

Hence,

(3.20) I (/r^p, Wp)^ — (J»Up)凹))m詞
—1 (丿淑如，WP)Q ~~ (frvqy wp)Q I + 1 (frvqy wP)rnfi ~ (/rwp? WP)m,^ I*

By the Schwarz inequality we obtain

(3龙i) 1(£布,幼为一(£标每&| 1

V (fr(Up - Vq),fr(up -為)県(«?p,Wp)l
W 이 Si。, 8지麻- 히I。,就이I播 •

Also, from (K2) we have

(3.22) |(看,每)”侦一(满,每，烏히

V (fr(^p 一 Vg),fr(Up - 6“)：盘(每,每)S ©

— 이I치k<x>G("p — vgiup ~ %】爲》(疔P'疔P)：侦

— 이L세0,<x>,시gp J 네*,세“시lo,C •

Hence, combining (3.21) and (3.22) we estimate

(3.23) 1(•飢,每)「I满，布，)”知

< 에•讯,8제标 -히Io,세御项 •

Similarly, since f € •乙。。(街 we obtain

(3.24) |(•笊，，街，弟-(£每,祠祠
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< ((f - (f 一 fr)Up)^(Wp,每)冒

V 이if 一 W』0,8,訓지Io,세每JI(海， 

and
(3.25) |(/rWp, Q — 知 치

Y ((fr - f)Up, (fr -所p)爲(每雨)3孫

- 이|£・ 一 f llo,8,C(Up，

— 에fr ―/||0,8,©11，시1(),세”시1侷 •

The Lemma follows from (3.23), (3.24), (3.25) and (3.18).

For any f E H「(Q) with Q C Rn and r > n we denote

(3.26) Ks(f) = ||n：7||0)oo^ .

Then, we easily see from Lemina 2.1 that

(3.27) Ks(7) 非，｛ IS"顼 +sY」믈)盼扁 ｝

京"1闭爲邪+ II用,私｝ •

Let us define

(3.28) Mp,g=ma세毎』金,
Z,J

where the subscript q will be omitted when g = 2 .

Lemma 3.4. Let Im G Gp be a quadrature rule defined on Q U 
Rn, which satisfies J(m) — p — 1 > 0. Let u € a G 
J G H$(Q) and al3 £ 上"(Q) for z, j = 1, ••- , n, such that k = 
min(a, p) > n. Then, for any wp E S》,o(Q) and an approximation 
up which satisfies (1.16) we have

(3.29)
I B(up)인5)— 이侦) I

H"시 |硕
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< C ｛厂同成 + 广住-플)||제 세제顽｝,

where q is & positive integer such that 0 < q <p and r = d｛m)— 
p — q > 0.

Proof. For arbitrary wp G S，,o(Q) we have 

(3-30) I B(up, wp) - Smift(up, wp) I

For any 宥顶= we let q be any integer such that 0 <
? < p and r = d(m) — p — q > 0. Then, since aa^ € Z00(H), due 
to Lemma 3.3 with vq =島(H訶，)and fr = IIJ?(a a,j), we have 

(冲佃岛，敬"何嘴塲LJ

- 어 忡伽“1。,8& 噤 - 急팡每세(盘 

니网，-邱(混”•네。,。。제劉扑餐虹

Using Lemma 2.1 we easily see from the boundedness of II； that

*2) 嘰-으띠wy

W 이同, -파히I播 京『(하T)||지I顼 •

Also, clearly

(3.33) "整"o 尸 이I에侦 < 이I에播，

and
(334) 屬虹 < 에에"

Moreover since aal3 G with k = min(a,p) > n we obtain 
from Lemma 2.3 that
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(3 35) |冋」—邱(gj)||°,8,C < C厂(」却即侦AG •

So, from (3.32)-(3.35) and since ||nj?(aaty)||0 is bounded, we 
have ''

［，스八 而p 0wp \ (스.스、dup dwp \ ,(3.36) 까河 aa%주끄,※ 八 — (aa 潢"주끄)」

< C{gTi비I에播+ 广隹一끌)||제a"에헤顽 } II御侦 •

Since ||wp||0^ < 에每|"今 < C Hwyl^ 0, the Lemma follows from 
dividing by |h시Rq. ' '

By a direct application of (1.21) and Lemma 3.2, 3.4 to Lemma 3.1 
we obtain the following Theorem which gives an asymptotic ff1(Q)- 
norm estimate for the rate of convergence with using numerical quad­
rature rules and the mapping T : Q —> Q C J?n.

THEOREM 3.5. For any numerical quadrature rules Im, Ii G Gp 
and for any mapping Z : Q —* Q U R" which satisfies (1.12)-(1.13), 
we assumejhat u e (街，a € Ha(Q), J G H$(G), f G and 
礼 C 上"(Q) for each = 1, ••- , n with min(a, 7, p) > n. Then, 
for any positive integers qq, q2 such that 0 < 52 < d(l) — p — 1 and 
0 < < min(d(m) — p — 1, p), we have

(3.37) 阪一御|项<。3「(11)||히|，海

+ 7建「믈)肌"이제侦

+ 9厂(1)||席q (仃||。逐+ 1庁蜘)

+「2*为|团插(||孔逐+ 11席,紀}，

where k = min(a, p), r2 = d(l) 一 p _ 如 히id 質］ = d(m) — P — q.

We see from Theorem 3.5 that the rate of convergence is essentially 
given by

(3.38) 0( + (d(m) — p-gi)Tf)

+ + (J(Z) -p- ?2)-(6-^)).
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If m, I and 冬2 are large enough with 贝=p, then the rate of con­
vergence is asymptotically。(［厂””」))，which coincides with that of
(1.21),  In the case where a, aty,/ and J are sufficiently smooth,k 
and 7 are large enough, even when d(m) « 2p + 1 with = p and 
d(7)就 p + 2 with 如对 1 the first term in (3.38) may dominate, so 
that the rate of convergence is asymptotically which Is the
same that of ||u — More precisely, in G-L quadrature rules, us­
ing Im and If with (p + l)-point and p-point G-L rules respective ly we 
would obtain an asymptotic rate 0(pT°7)).. V、

When one of aatj and J f i돊 not smooth enough, either because one 
of them is not smooth in the original problem or because a non-smooth 
mapping 꼬 is used, the first term 1) may be dominated, by one 
of the other terms. In this situation, using an overintegration with a 
sufficient number of m or Z we may reduce the error ||u — up^ Q 
until the first term dominates again. In practice, when aatJ is not 
smooth we may increase the value of d(m) with q\ 闵 p. When J / is 
not sufficiently smooth we also increase both of d(t) and q»

We now estimate the 乙2(Q)・ error. To estimate the error ||u — up||0 
we start with the following Lemma.

LEMMA 3.6. Let u be the exact solution of (1.8)-( 1.9) and up the 
p-version solution of (1.16). Then, for an approximate solution up of 
Up which satisfies (2.5) we have

(3.39)
II” — Upl(o,Q — llU — wpllo,Q

+ SUP li  ---------------- ----Bmq(泓，w)|
明，wS"(q)llwpllo,n

where for each wp g S’,o(Q), w E S”)(Q) denotes the solution of 
discrete variational problem:

(3.40)

proof.

(3.41)

B(w, vp) = (wp, vp)q for all vp e S’,()(Q).

By the triangle inequality we have

II” — upIIo,q — llu _ wpIIo,q + llwp — upllo,n'
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Since up — upe SP)O(J2) the last term of the right side in (3.41) can bR 
characterized as 〜

(3-42) ||uP-Mo,n= 河 施言"泓)이.
Wp€Sp(o(n) llwpllo,Q

Hence we obtain from (3.40) that
(3.43) \(wp,Up 一 up)q \ = \B(w,up - J

< \B(w, Up) - Up)\ + Up) - B(w, Up)|.
Due to the fact that B(-, •) is symmetric and w E S"(Q), it follows 
from (1.16) and (2.5) that
(3.44) |(s,Up-f")이 < (宥(赤"。)I뉘(/3，)9-(£ 後),q|. 
This completes the proof.

The above Lemma indicates that the error ||u —侦pl* q will depend 
on several terms. The first term ||u — wp||0 n in (3.39) was already 
discussed in (1.20), which depends on the smoothness of the exact 
solution u(j:). The other terms will depend upon the smoothness of 
a(x), /(x) and the mapping T.

*****
Now, for each t E UP(Q,) we denote

(3.45) £q(t) = max || ((矗■ +1) — nJ + *) II > 0 < g < p.

Then, we obtain
(3.46) 勺叫仰侦 最 * teUp(Q),
where A is a sufficiently large number. Moreover, it follows from (2.8) 
나lat
(3.47) £p(t) = 0 for all t G Up(Q).

Here,we have the following Proposition.

Proposition 3.7. Let u e 珥(金), a e J G and 
atj G H"(Q) for = 1, ...,n with k = mm(a,p) > n. Then, for 
any w € Sp,o(Q) we have

(3.48) |J3(up,w)-BmjQ(up,w)| 스
c 伉(毎) + 厂“11히1项 + 广' II秘 - 히［侦

+厂(卜플)애疝 — 福|侦 + II히 k 訓헤姉昭｝ I岡盘， 
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where g is a positive integer such that 0 < q <p and r = d(m) 一 p—q > 
0.
proof. For w G S"(Q) we have

(3.49) I B(up, w) 一 w)|

¥ ｛咿国 参亂- (敬 쓿' 罰
Let q be any integer such that 0 < g < p and r = d(m) — p — q > 0. 
Then, for any i = 1,• ,n, due to Lemma 3.3 with fr = 仓仓订 and 
vq €〔為(Q), we have

(3.50) 스스 dup dw
。어，瑟，瓦

注{忡初 II。,°。,시棗 - 히I*

+ 网 j - 珥祠0,8,시I 劉* } 塲虹

Since II邱溢Wo,8,C < 修初一邱溢"llo,°。柬+ ll^ullo.oo.n we easily 
see from Lemma 2.3 and (1.10) that ||II~aay||0 is bounded by 
a fixed constant for any r = d(m) — p — g > 0. Moreover, taking 

7疔
标 = 吗(熹 + 毎) + 파① 一 礼) 一 nju in Uq(Q) we have from 

CzUz £
Lemma 2.1 that 

(3.51) ||H 阳御°,8 司I 整一히姦

<。｛||(語+切一파(整+名)|| 一

5Z, UXi OjQ
+11① - 各) - 팡(& - 毎)11。° + ||« - 파히|康 ｝

< C ｛勺(為) + qT ||& - 히I侦 + 厂却에撬 ｝,

where C is independent of p and q.
In addition, we obtain from (3.35) that
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(3.52) ||磁勺—邱溢璀 那涝I〕厂
g 0,Q

< STF)同盘A시I祐品

<。厂(卜叫제%对侦臍一허|侦 + ||히|项).

Thus, substituting (3.51) and (3.52) in (3.50) we complete the proof, 
since I岸II 至이岡商

ux3 0,Q

From Lemma 3.6,due to (3.2) and (3.48) we have the following the­
orem.

Theorem 3.8. For any Im, Ii G Gp, defined on Q C Hn, let 
u € (酒,a e (酒，j e f e 矿侄)and atJ € 上"(C)

for = 1, - • • ,n such that k = min(a, p, 7,6) > n.Then, for any 
positive integers 幻0 such that 0 V 如 W 如)—p — 1 and 0 V 
Qi < min(d(m) — p — 1, p), we have

(3・53) ||« - «p||0)fi 으。{ 0-이|히I顼

+(91-1 + rl(fe 2)j|제项 Mp) II疝一 히I1G

+「「"-釘11제心计/세지|],金

+婁-(1板ii 海(I 厠 j 뉘饥 G

+他-s 을)仃||頌 세孔,。福 + 11血海)+%(名/},

where k = min(a, p), r2 = d(Z) — p — 52 and ri = d(m) — p~ qi- 

proof. For each wp G S；,o(Q) let w € S>,o(Q) be the solution of 
(3.40). Then, since w G S，,o(Q) we have B(w,w) = |(wp,w)Q| < 
||wp||0씨|o,q・ In addition, due to Poincare^ inequality and (1.10), 
we easily see that there exists a fixed constant M such that

(3.54)
II 히静

11 wp II o,n
< M.

Thus, by a direct application of proposition 3.7 and Lemma 3.2 to
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Lemma 3.6 we have

(3.55)

sup ----------------------------------------------
%€S’,o(Q)|| 也이 loq

+ 1(/, s)Q - (/, w)i)ft| < c {qra\\u^

+(91-1 + 지］登 昭，) ||u 一 히h金

+ 7「卜플)II헤登』이同 I 盘 

+ 如«一플板|静새히|。,。顼 + 仃临) 

+ 尸厂缶믈)仃II演 이升。,。顼 + II升倔) + %(砌}.

Moreover, it follows from (1.20) that the first term of the right side 
in (3.39) is dominated by the first term in (3.55). This completes the 
proof.

When d(m) and d(l) are large enough with q± = % = p9 the rate 
of convergence for \\u — 诅 asymptotically。(?厂3—1)), which 
coincides with that of ||tz — up^t Also, it follows from (3.47) that 
the 乙2(Q) error ||u — u?||0 n in (3.53) is asymptotically (9(p-a) under 
nearly exact integrations, which is 나le same with that of ||u — up||0 
in (1.20). Moreover, we see that under certain conditions the L2(^) 
error ||u — up||0 Q has nearly <9(p-1) improvement over the H1 error 
|g — 诟 ||项. In the case where a and f are sufficiently smooth, i.e., 
a and 7 are large enough, even when d(m) a 2p + 1 with qi = p and 
d(l) « p + 1 the first term of the right side in (3.53) may dominate 
the other terms, so that 나ic rate of convergence for ||u — up||0 is 
asymptotically O(p~a). When a or / is not smooth enough we may 
reduce the error ||u — up||0 by increasing the value of d(m) or d(l) 
respectively. In fact, using overintegrations Im(m > p) or 1/(1 > p) we 
recover the optimal rate of convergence for ||u — up||0

4. Numerical experiments
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We consider the following one-dimensional problem:

-으礁9 = f on Q = Q니

with u(0) = u(l) = 0.
Here, a and f are chosen in such a way that the exact solution is u(x)= 
ex sin(j：) — e1 sin(l) x. Of course, the simulations have no need for the 
knowledge of the exact solution u.

EXAMPLE 4.1. We choose a(x) = l/(x + u?) for w > 0 and take 
the mapping T(x)^= ((2 + £)a — (1 — x 4- )/((2 + £广一枝)with 
a = 2.5 and e = 0.001, If w is near to zero, then a(x) and /(x) have 
poles near to a: = 0 in the original problem. Hence we need the over­
integrations Lm and Li in both of the stiffness matrix and the load 
vector. When we choose w = O.OOlJhe j71(J2) and -^2(^)-error 
results in Figure 4.1.1 and 4.1.2 respectively, follow under the case 
where Lm(m = 1000) and Li(l > p).

We consider the following two-dimensional problem:
—div( aVu) = f on Q G I?2, with “(z) = 0 on T.

EXAMPLE 4.2. In the case where the domain Q is the trapezoid 
with vertices A = (0,0), B = (2,D), C = (0,1), D = (1,1), we consider 
mapping T : (S' 爲)€ Q ——> (^i, ^2)€ Q given by =(僉i+ 1)(3— 
分2)/4, x2 = (x2 +1)/2. We choose a(3Ti,x2), in such a
way that u(xi, x2) = x±X2 (zi + 丑一2) — 1). In particular,
we take a(xi,a：2)= l/(xi + w) with w > 0. If w is near to zero, then 
a(xi,a：2)has a singularity near to the x2-axis,互nd also f is singular. 
Hence, even if the mapping T is smooth enough, aa%3 and J f are not 
sufficiently smooth, which is caused by the original problem. Tb obtain 
optimal results we may use overintegrations Lm and When w = 
0.05, Figure 4.2.1 and 4.2.2 show 난le results in the case where Lm(m = 
50) and Li{l > p + 1) are used.
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Figure 4.2.1
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