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OPTIMAL ERROR ANALYSIS OF THE
P-VERSION UNDER QUADRATURE RULES

Ix-SuNG KM

1. Introduction

Let £ be a closed and bounded polygonal domain in R?, or a
closed line segment in R! with boundary T, such that there exists an
invertible mapping T : & — Q with the following correspondence:

(1.1) zefeoz=TE) €,
and
(1.2) TeUy(Q) st =ToT ™! € Uy(Q),

where {} denotes the corresponding reference elements I= [—1,1] and
Ix I in R* and R? respectively,

(13)  Up(@) )
= {t : tis a polynomial of degree < p in each variable on 1},
and

(14)  Up(Q) = {t : T=toT e U(Q)}.

We introduce Sobolev spaces ,
(1.5) H™?(Q) = The completion of {u € C™(Q) : |[u[|,, , o < o},
equipped with norm

1/p
1) filye = (T 100lE,0) i 1<p<cm

0<jr<m

(1.7 llmyco0 = oex 10 uis,00,95

where || - ||, , o is the usual Ly(€2)-norm, and the subscript p may be
dropped when p = 2.
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Now we define a space H*(Q2) = {v € H™(Q) : uvanishes on I'},
and consider the following model problem of non-constant coefficient
elliptic equations:

Our model problem is to find u € H} (§2), such that

(1.8) —div(aVu)=f in QC R?,
d, du . L
(1.9) - EE(GEE) =f in QCR.
Here, for sake of simplicity to ensure a solution exists we assume
(1.10) 0< Ay <a(z) <A forall z€,
and
(1.11) f € LyQ).

In addition, we also assume that there exists a constant A such that

(1.12) |7 T, g <A for 0<j<M,

],Oo,ﬁ ? 7,00,

113y |7 (il <A for 0<j<M-1,

500l 2,00,82

where J and J~! denote the Jacobians of T and T~! respectively,
and M > 1. We note that M must be large enough to ensure that
the domain € is not too distorted, i.e., T is smooth. For non-smooth
mappings, (1.12) and (1.13) can still hold, but the constant A may be
very large.

By (1.12) and (1.13), as seen in theorem 4.3.2 of [6], we obtain the
following correspondence:

For any « & [19‘30]} OSIBSM,

(114)  TeWsro (@) —t=FoT ' e WAXQ)
with norm equivalence

(115) Gyt

.o < Wllgaa < Colltlls a0

Our problem {1.8)-(1.9) may be approximated by several numerical
methods. In this paper we are interested in the p-version of the fi-
nite element method. The classical form of the finite element method,
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called the h-version, uses piecewise polynomials of a fixed degree p and
decreases the mesh-size h to achieve accuracy. In the p-version, a fixed
mesh is used while the degree p is increased for greater accuracy. The
h—p version is a combination of both. The standard h-version has been
thoroughly investigated. But the p- and kA — p versions are recent de-
velopments. A survey of the p -version’s computational and theoretical
characteristics may be found in [3]. Here, when we use the p-version
of the finite element method without subdividing € the discrete vari-
ational form of (1.8)-(1.9) is to find wu, € Spp(2) satisfying

(1.16) B(up,vp) = (f,vp)q for all v, € S;0(R),

where
(1.17) B(u,v) z/ aVu-Vodz,
Q
(1.18) (fyv)g =/ fvdz,
Q
and
(1.19) Spa(Q) = Up(@) N H().
In [2] and [8], M. Suri obtained optimal error-estimates
(1.20)  |lu—uplig o < Cp 7w —upll; g
and

(1.21) lu = upll; o < C'1f>_(’"_l)[|u||r,Q forall »e€ Hj(Q),r > 1.

But, the above results follow under the assumption that 7' is a suffi-
ciently smooth mapping and all integrations in {1.16) are performed ex-
actly. In practice, the integrals in (1.16) are seldom computed exactly.
To compute the integrals in the variational form (1.16) of the discrete
problem we need the numerical quadrature rule scheme. In this paper,
when some numerical quadrature rules are used for calculating the in-
tegrations in the stiffness matrix and the load vector of (1.16) we give
its variational form and derive the estimates of u — i, in the L,(£2)- and
H(Q)-norm, where i, is an approximation satisfying (2.5). In (7], the
spectral element method has been introduced and Y. Maday point out
the cases where overintegrations would be required. We also analyze
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the cases in which the overintegration may improve the accuracy of the
approximation to allow for optimal results. In particular, we observe
more general mapping T : ! — Q without subdividing the domain
2. This may have influence on the smoothness of the integrands in the
variational form. Using Gauss-Legendre(G-L) quadrature rules some
numerical experiments confirm the results.

2. Preliminaries

We consider numerical quadrature rules Iy defined on the reference
element Q by
n(k)

A=Y @ f@k)y ~ | f(&)dz
(2.1) B = 3ot e [ F@a,

where k is a positiveinteger. Let G, = {I;} be a family of quadrature

rules Ip with respect to U,(Q), p=1,2,3,---, satisfying the following
properties: For each I} € Gp,

(K1) @©F>0 and z%*eQ for i=1,---,n(k).
~2 -~ ~ o~

(K2) Iu(f )<clnfu§n for all f e Uy().

(K3) Callfles <Ik(f) fora.ll f e U, (),

where U,({) = : FeU,(§)} c U,(Q).

(K4) Ik(f) = fﬁ f(x)vdx fOI‘ all f € Ud(k)(ﬂ)
where d(k) > d(p) > 0.
We also get a family G, o = {Ii,0} of numerical quadrature rules with
respect to Up(Q), which are defined on § by

(k) n(k) R

(22) La(f) = Yo wif(el) = Y @ T@ENS o THED) = (I )

Now, we denote by DF the n x n Jacobian matrix of F: R® — R",
and define two discrete inner products

(2.3) (m,v)“z = Iig(uv) on K,
(2.4) (@ %) g = (@) on Q.
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Then, using quadrature rules I, and I; in G, we obtain the follow-

ing actual problem of (1.16): To find %, € S, 0(§2), such that

(2.5) Buma(Up.vp) = (f,vp),q forall v,y € 5,50(92),

where

T T

Qayy "y A~
’1J=1 633, a.’l,‘]

(2.7) (f, vp)z,n = (:f}': i’});ﬁ ’

e
and @;; denote the entries of the matrix J(DT-1)}(DT!) .
The following Lemmas will be used later

LEMMA 2.1. For each integer 1> 0, there exists a sequence of pro-
Jections

H;, - H'(ﬁ) — Up(ﬁ), p=1,2,3,---, such that

(28) N5, =3, forall 5, € Uy(d),
(2.9) iz — II;,ﬁ”s g < C’p‘("’)llii"rﬁ forall we H™(Q)
with 0<s<I<r.
Proof. See [8, Lemma3.1].

LEMMA 2.2. There exists a sequence of projections
P; s HY Q) - Spo(f)), p=1,2,3,--, such that

(2.10) [l — P’}uﬂs‘ﬁ < Cp—('"")ﬂu"r’g forall v e HJ(Q)
with 0<s<1<r.

Proof. See [8,Theorem4.2].

LEMMA 2.3, For Q C R", let &€ H*(Q) with s >n. Then the
projection II% from Lemma 2.1 .atisfies

211 @ -1pa|, 5 < Cp e B, 5.

Proof. By interpolation results ( see [5, Theorem 3.2 | and [ 4,
Theorem 6.2.4 | ) we have that
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12) la-mal, s < Clla-malk,, e - mald
for 0<e< -;-
We also have from Lemma 2.1 that
(213)  fa-Mpifl 5 < Cp G-, for 0<r<n<s.

Hence, teking with r =3 +¢ and r=3 —¢ in (2.13) we obtain
~ n- ~ -~ l - - ~
- e}, gla—T3al}_, o < CpCDlal, q,
which completes the proof from (2.12).

3. Error estimates under numerical quadrature rules and
mappings

First we shall estimate {ju — %p||, , which depends on several sep-
arate terms. The first dependence is on the error ||u — u,l[, o with
respect to the ma,ppmg T'. Next, the error will depend upon the
smoothness of @, @;, and f with the Jacobian J of T.

LEMMA 3.1. Let u be the exact solution of (1.8)-(1.9) and u, an
approximation of u which satisfies (2.5). Then there exists a constant
C independent of m, ! such that

(31)  lu=pl g < Cl inf (lu=upllg

+ sup |B(“pawp) - Bm,ﬂ(up’wp)' }
w, €S5,p,0(N) ilwp!h Q

+ sup I(fa wp)g (fa wp)1 Q' ]

waSp,o(Q) ”wplll Q

Proof. 1t is similar to the technique in [6, Theorem 4.1.1 |.

In Lemma 3.1, the third factor that |lu —%,||,, depends upon is

the smoothness of f and J with the mapping 7. In this connec-
tion, we shall use the following Lemma.
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LEMMA 3.2. Let I; € G, be a quadrature rule onASel C Ri which
satisfies d(l)—p—1>0,andlet fe€ H'(Q) and J € HY(Q) with
min(y,6) > n. Then, for any w, € Sp0(2) we have the following
estimate

Kf’ wp)g - (fs wp)l,gl
el g
< CLa DY, alllTlo o + 1 s5)
+(d) - p= ) P TNsg (Flloca + 1fll,a) 3

where q is a positive integer with d(l})—p— ¢ >0 and C is inde-
pendent of l,p and gq.

(3.2)

Proof. Since d(l) — p—1 > 0 there exists a positive integer ¢
such that d(I) — p — ¢ > 0. For arbitrary @; € Ugyy—p—(22) and

Wy € Uq(ﬁ) we let @ = @ Wy € Ud(g)_,,(ﬁ). Then, due to (K4) it
follows that

(33) ({‘;s ﬁp)(,ﬁ - ({Ba Gp)ﬁ =0.
Since (f, 'wp)n = (ff,ﬁ’\p)ﬁ and (fva)z,n = (ff’ t"‘;10)1,6

(34) | (fa wP)Q :E\fa wp)l,n | N
< {(Jf, Qp)ﬁ “(ﬁs in)§| + ‘(ﬁ’ﬁp)l,ﬁ - (J fs ﬁp)z,ﬁ B

By the Schwarz inequality we obtain

(35) (T f, )5 — (@, 8p)5]

< 1( { sz,wp)9|+|(Jt’52:131'*32,%3p)ﬁl

< TS = B2)llo g 1Bllo 5 + (T — B1)Ballg 5 IEpllo o

< (1o 5 I|f = D2llg 0.5 + 1~ Billy oo 102llo 8 ) @pllo g -
Taking 1w, = = M3y—_p— q(J) and wy = H;‘(f) in Lemma 2.3 we
have
(36) I —Ballgeon < Ca O PUfll,a

and
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37 T =dillyeq < CUD-p-0) O PTls5 -

Moreover, by the triangle inequality and from Lemma 2.1

(3.8) IB2llg g < UFlloa + I — 2llo.a
< C{Ifll,a+a"Ml,a}
<Cifll,a -

and obviously

(3.9) IMos < CINsa -
Hence, by substituting the above results in (3.5) we have

(810) | Rdpg—(Ddpgl
< C{g D +(dD) - p— ) P HIFIL, a1 ls5 UBplos -

Similarly, we can estimate the last term of the right side in (3.4), which
can be rewritten as

(311 |(TF, )5 — (,%),5]
< | (Jfa{ap);,ﬁ "'(J ﬁ% @p)z.ﬁ I + |(J 62’63?)1,5 - (&’\162’ ﬁp)lﬁ [
= HJ(f —@2), Wp); g | + |(®2(J — 1), @p)y 5 |-

Using the Schwarz inequality, we have from (3.6) and (K2) that

. N T
(312) [{(J(f — B2}, Bp)y 5| < (J(f — @2), J(F — ©2))y 3 (Bp, Bp)
< Clllo,00,8 If = W2llg 0, 0l 2

< Cqm DL a1 Nlg 00,8 1@l 5 -

Moreover, from (3.6) and (3.7) we also obtain

(313)  [(@a( ~ @), Bp), 5|
~ —~ 1 1
(B2(J — @), @o(J = @1)),5 (B, @Bp)

<
<C "J — i “o,oo,ﬁ “ﬁ2"o,oo,ﬁ "tﬁpno,ﬁ
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< CI = Billg o5 1Fllgcog + 1 — D2llg o) 1F5llg &
< C{(dl)y—p—a) P58 1Fllo 0.5 1Bpllo g
+(d0) —p—a) VDT 5 1F1, 8 1@plloq }-

Hence, combining (3.12) and (3.13) we estimate
(314)  |(JF, @), — (9, Bp) 5|
< Cle DNy o0 1510

+(d0) = p— ) P55 Il coa
+q DAYy —p - )TN 5 1F1l, 5 Hidallo s -

Since the last term of the right side in (3.14) is dominated by the
terms in (3.10) we derive

(3‘15) | (f’ wp)Q :(fa wp)&g I .
< L DSl a (Wl s +1lss)
+ (d(D) - p~ @)U 5 (I1Flg o + 171, 5 HiBpllo 5 -

It is obvious from (1.15) that
(3.36)  {@pllye < Clipll, g < Clwllyq -

The Lemma follows from dividing with {Jwpl}; o -

Now, we give the following Lemma which can be used for estimating
the middle term in (3.1).

LEMMA 3.3. Let @,, @, € Up(Q) and f € Loo(Q). Then, for all
Vg € Ug(Q), fr € UNQ) with 0 < g<p and r=d(m)—p—g>0

we have
(317) 1 (fUp @p)g — (Fp, @p) 5 |

< C{ ”ff”(],oo,ﬁ”ﬁ? - a;"o,ﬁ + "f - fr”o,oo,ﬁ"ap ”o,ﬁ } “@P”(],ﬁ ’
where (' is independent of p,q and m.

Proof. For any fr € U,(ﬁ) we have
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(3.18) i (f 'apa {Ep)ﬁ - (fap’ zi;P)m.ﬁ I
< N(F iy By)g — ety By | + |(Frty, Dplg = (Frlpy @) |
+ l(frawtﬁp)m,ﬁ - (f aﬁ’ ﬁp)m,ﬁ ‘ '

Thank to (K4),

(319)  (Fody, Bp)g — (B By),nq = 0 for any 9, € Up(8).
Hence,
(320)  {(frp, Bp)g ~ (i, Bp) s | 3
< N (frttp, Bp)g — (FrUg, Bp)g | + H{Fr0g Wp ) g — (Frtip, @p), |-
By the Schwarz inequality we obtain
(321) | (ﬁap’{‘;p)ﬁ - (J?raqa ﬁp)g |
(

< (T — B)y ol — vq))g(wp,wp%
< C”fr”o oo,g"“p ”9"00”“’?“00 .

Also, from (K2) we have

(322)  [(fif4,Bp), 3 — (Fritps @), |
< (i =3, BB ~ 50008}
< 0||fr"o oo d{tp — Vg, Up — ”G)J Q(wp’@ )ri,ﬁ

< C”fr”t)oo(z”“p ”q"o,g"wp"o,ﬂ .

Hence, combining (3.21) and (3.22) we estimate

(323) | (f!'aps u‘;p)ﬁ — (}:ﬁp’ ﬁp)m,ﬁ [

< Clifello,co,alfp = Bello aliEnlle g -

Similarly, since fe Lm(ﬁ) we obtain

(3:24)  [(Fip, Bp)g — (Fritps Bp)g5]
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~ o~ ~ o~ 1 1
s ((f - ff)up7(f - fr)up)é (wpawp)é
< Cnf"ff‘"o,oo,ﬁ "aruo,ﬁll'&;?"u’ﬁ )
and N N
(325) ](f"‘ap’@?)m,ﬁ - (f apiﬁp)m,ﬁl
- ~ Ay
((fr e f)upa(fr - f)up);'ﬁ(wxhwp):n‘ﬁ
-~ -~ P Y N &
< Clfr - f”o,oo,ﬁ(“mup):"ﬁ(wp’wp);,ﬁ
< Clfe = fllo coalltello ali@plle 5 -

The Lemma. follows from (3.23), (3.24), (3.25) and (3.18).

(A

For any fe H"(ﬁ) with Q@ C R® and r>n we denote

(3.26) Eo(F) =12 fllg oo -

Then, we easily see from Lemma 2.1 that

(3.27) KJ(H) <C U fllgcog +57 " Pllfllg)
<C{ Mo on + 1Fla1-

Let us define

(3'28) Mp,q = II}%;X "a’.’ "p,q,ﬁ ]
1

where the subscript ¢ will be omitted when ¢ =2.

LEMMA 3.4. Let I, € G, be a quadrature rule defined on Qc
R", which satisfies d{m)—p~-1>0. Let i€ H°(Q),de H*Q),
J e HYQ) and @&, € H/Q) for i,j = 1,---,n, such that k =
min(«, p} > n. Then, for any w, € S,0() and an approximation
up which satisfles (1.16) we have

(320) 1B(e2wp) =~ Brna(up wy) |
llwslly
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< C{g V), 5+ r~¢-Plall, 5 M, il 5},

where ¢ is a positive integer such that 0 < ¢<p and r =d(m)—
p-—g>0.

Proof. For arbitrary wj € Sp0(2) we have
(3.30} l B(u,,, wr) - Bas’n\,n(‘gl%wp) | au s
m D
< o~ -_P_ P ~ P
<€ "33"'("“" 9z;’ aa,-),, ( @%igE az,)

For any @i ¢,7=1,---,n welet ¢ beany integer such that 0 <
g<p and r= d(m) p— g > 0. Then, since @a;, € LN(Q) due
to Lemma 3.3 with &, = ;Z-(II;%,) and fr =TI*(@4d;,), we have

~n Oy BB\ (... Oty 3w,,)
oan (a2 ) - (a6 5 )
< CLIL@8 o 5 152 — -T2 ol
—— " o4
@8, — T2@85)], o al S22 “’u M a;n

Using Lemma 2.1 we easily see from the boundedness of H; that

532 I - )
<Ol - Ryl 5 < oDl g

Also, clearly
Bup ~ -
(3.33) " ” < C"“p"1,§ s C““lll,ﬁ )
and
0w, ~
) — < &5 -
(3.34) Il < Cligsl g

Moreover, since @aa,, € H *(ﬁ) with & = min{a,p) > n we obtain
from Lemma 2.3 that



OPTIMAL ERROR ANALYSIS OF THE P-VERSION 19
(3.35)  J@aad, —I}@a;)lp 0,0 < Cr-*=DHfal, oM, -

So, from (3.32)-(3.35) and since [II}(@@.;)lip o5 is bounded, we
have

Ou, O Ou, 0w
3.36 ad, L, =2} -|(@a,;L, =L
(3.36) max | (aa,,&a, 5%, )ﬁ (‘m”aae,’ 3%, )mﬁl

< C{g VNl g +r*D|all, 5 Mollall, 5} 51, 5 -

Since || @yllyg < CllByll; g < Cllwyll, o, the Lemma follows from
dividing by |lw,l{, o

By a direct application of (1.21) and Lemma 3.2, 3.4 to Lemma 3.1
we obtain the following Theorem which gives an asymptotic H(Q)-
norm estimate for the rate of convergence with using numerical quad-
rature rules and the mapping T : {} —» Q C R".

THEOREM 3.5. For any numerical quadrature rules I, It € G,
and for any mapping T : Q — Q C R™ which satisfies (1.12)-(1.13),
we assume that % € H°(Q),d € H*(Q), J € H¥Q), f € H'(Q) and
a,, € HP($}) for each 1,j =1, ,n with min{a,v,8,p) > n. Then,
for any positive integers gq,q; such that 0 < g, <d(l)—-p—1 and
0 < g1 < min{d(m) —p—1, p), we have
(337)  lu-pl o < C{a " Viil, 5

—(k—2),~ -~
+r0 0 Pall, g M, Il 5
+ o "D, 5 (11l o + 1 15.0)
+r2" DN g N llg o + 1711, 8) 3

where k =min(a,p), 1o =d(l)~p—g, and ry =d(m)—p—q.

We see from Theorem 3.5 that the rate of convergence is essentially
given by

(3.38)  O(q=C"V 4 (d(m)~p-gq) %P
+ @O p(d(l) -p-g2) ") ).



26 Ik-Sung Kim

If m, ! and ¢, are large enough with ¢; = p,then the rate of con-
vergence is asymptotically O(p'("“)) which coincides with that of
(1.21). In the case where @, a,;, f and J are sufficiently smooth.i.e., k
and < are large enough, even when d(m) ~2p+1 with ¢ = p and
d(l) ~ p+ 2 with ¢, = 1 the first term in (3.38) may domunare, so
that the rate of convergence is asymptotically O(p—(°~1)} which is the
same that of |Ju — u,|f; 5. More precisely, in G-L quadrature rules, us-
ing I, and I} with (p+1)-point and p-point G-L rules respectively we
would obtain an asymptotic rate O(p~—(°~1)), |

When one of aa,; and J 7 is not smooth enough, either because one
of them is not smooth in the original problem or because a non-smooth
mapping T is used, the first term ¢, (=) may be dominated by one
of the other terms. In this situation, using an overintegration with a
sufficient number of m or ! we may reduce the error [lu — i,
until the first term dominates again. In practice, when @a,, is not
smooth we may increase the value of d{(m) with ¢; &~ p. When J f is
not sufficiently smooth we also increase both of d(I) and ¢».

We now estimate the L(2)- error. To estimate the error [lu — U][, ¢
we start with the following Lemma.

LEMMA 3.6. Let u be the exact solution of (1.8)-(1.9) and u, the
p-version solution of (1.16). Then, for an approximate solution i, of
up which satisfies (2.5) we have

(3.39)

le = %plloq < llu—upllyq

1 ~ o~
NE sup —(|B(u,,, w) - Bm,ﬂ(upa w)l
wp€S,,0(R) “wp"o,ﬂ

+ ‘(f} w)ﬁ - (f) w)l,ﬂl)'p

where for each w, € Spo(Q), w € Spo(§2) denotes the solution of
discrete variational problem:

(3.40) B(w,v,) = (wp,vp)a forall v, € S,0(R).
proef. By the triangle inequality we have

(3.41) flu ~ Epllo,g < flu— “p”o,n + [fup — ap”o,ﬁe'
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Since u, — U, € Sp,0(82) the last term of the right side in (3.41) can be
characterized as |

~ [(wp, up — tp)a
(342)  |lup —tplloq = sup .
d rle.a wp €S;p,0(N) "wp“o,n
Hence we obtain from (3.40) that

(3.43)  Nwp,up — tip)a| = 'B(w$u£_ up)| _ _

< |B(w,up) — Bma(w,Up)] + |Bm,a(w, #p) — B(w,up)|.
Due to the fact that B(-,-) is symmetric and w € S, ({2), it follows
from (1.16) and (2.5) that

(3.44) |(w,up—tip)a| < {B(Up, w)—Bm,a(tp, w)|H(f, w)a—(f,w); ol
This completes the proof.

The above Lemma indicates that the error [[u — uy||, o will depend
on several terms. The first term |lu — uplly o in (3.39) was already
discussed in (1.20), which depends on the smoothness of the exact
solution u{z). The other terms will depend upon the smoothness of
a(z), f(z) and the mapping 7.

Now, for each £ € Up({) we denote

—~

o~ -~
(3.45) eq(ﬂ:m?xll(a—&+t)«-Hé(aai-t)ﬂog, 0<g<p

1

Then, we obtain
(346) &,(H) <Cqg OVt 5 forall teUy(),

where X is a sufficiently large number. Moreover, it follows from (2.8)
that

(347) () =0 forall fe Uy().
Here,we have the following Proposition.

PROPOSITION 3.7. Let & € HZ(Q), a € HXO), J € H () and
a,; € HP(Q) fori,j = 1,..,n with k = min(a,p) > n. Then, for
any w € Sy o(Q) we have
(348) |B(iip,w) — Brm,a(ilp,w)| A

< Cleg(,) + ¢ Nl g + g & -l 5

+r= D2 - Gl 5 + Il g el s Mo HIBY, 4
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where g is a positive integer such that 0 < ¢ < pand r = d(m)—p—¢ >
0.
proof. For w € Sp,0(?) we have

(3.49) | B(¥p,w) — By g(ﬁ,,w)l

3‘u ow . au ow
< —_ .
B C{mgxl(aa" 8z’ 3z,) ( % 3’“ 31::) nl}

Let g be any integer such that 0 < ¢ < pandr = d(m) —p—¢ > 0.
Then, for any ¢ = 1,-*- ,n, due to Lemma 3.3 with f, = II}aa;; and
Vg € Uy(Q), we have

—_— au ow — au 8w
(3.50) l(aa,, 5. aﬂv;)n (aa,_, %, % )m§|

Hip
C{”H"aa,,"o,ooﬁﬂ I: ”q” o

—~— ow
+ ||aa;;, — NI} aa;, “o 0o, Q" " } f 07'\,'"0 a

Sinc‘e “n:“ aai.?“(),oo’ﬁ S “aaij - n: m‘} uo,oo,ﬁ + "%ﬁ“o,m,ﬁ we ea’Sily
see from Lemma 2.3 and (1.10) that |II'I:.‘ aa;jfl o, is bounded by
@ fixed constant for any r = d(m) — p — ¢ > 0. Moreover, taking

-

= Hl(gti + %) + (@ ~ ;) — I} in U,($}) we have from
Lemma 2.1 that

. B,
(3-51) "H aa':"ooogllaA ""”9" 08

< o1 g2 + ) -myZe 43 ),

+i(@ - B,) - (@ ~ ttp)ll‘, g tlu- H“Ilo 2l

< C {eg(ity) + ¢ YT = Tl 5 + ¢Mall, 5}
where C is independent of p and q.
In addition, we obtain from (3.35) that
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(3'52) “aa‘J nnaa‘.’ uo oo Q“ 6 p "

< Cr—(k- %)"aua,ﬁ p““?"l,ﬁ
< Cr=*=D|a||, aMy(lE — %l g + 5l ).

Thus, subst1tut1ng (3.51) and (3.52) in (3.50) we complete the proof,

since || —|| _<Cldl,z
Z; 0,

From Lemma 3.6,due to (3.2) and (3.48) we have the following the-
orem.

THEOREM 3.8. For any I,, I € Gp, defined on Q C R, let
u € H"(Q), Ge HXQ), J e H6(Q) f € H“’(Q) and a,; € HP(Q)
for i,5 =1,---,n such that k = min{a,p,v,8) = n.Then, for any
positive integers q1,92 such that 0 < g <d{l)—p—1 and 0 <
g1 < min{d{m) — p— 1, p), we have

(353)  fu—Tlleq < C{a"llill, 5
+a Va5 M) - T, 6
+rr T B@Y, 5 M, 1, 5
+ @ DN 8 Wl o + 17115.8)
+r27 DYl 6 (Ul o + 1F1,0) + €0 (@) 3

where k =min(e,p), ro =d(l)—p—¢q2 and r1 =d(m)—p—q.

proof. For each w, € S;0(f2) let w € S,4(R) be the solution of
(3.40). Then, since w € S,,0(2) we have B(w,w) = |(wp,w)q] <
lwplly ollwlle - In addition, due to Poincaré’s inequality and (1.10),
we easily see that there exists a fixed constant M such that

(3.54) olha
lwpllo 0

Thus, by a direct application of proposition 3.7 and Lemma 3.2 to
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Lemma 3.6 we have

(3.55)
1 - ~
sup ————(|B(&,,w) — Bp,a(iip, w)]
wp €Sy o(R2) "wP”o,g
+(f,wla — (fiwhal < C{a™"llEll, g

_ —(k—2) 1~ ~ =
+ (@ 7@ g M) i -, 5

—~{k—2), ~
+ 7 Va8 M, 3N,
+ a2 DAL 5 W llgcog + 1T 1l5.0)

+ 727Nl 6 (17Tl 0,8 + 1F1L,0) + 0 ()}

Moreover, it follows from (1.20) that the first term of the right side
in (3.39) is dominated by the first term in (3.55). This completes the
proof.

When d(m) and d(!) are large enough with ¢; = g; = p, the rate
of convergence for Hﬁ—ﬁpﬂl’ﬂ is asymptotically O(p~(°~1), which
coincides with that of fju — upf], 5. Also, it follows from (3.47) that
the L,(€) error [fu — tiplly o in (3.53) is asymptotically O(p~7) under
nearly exact integrations, which is the same with that of [lu — u,l|, o
in (1.20). Moreover, we see that under certain conditions the L;(Q)
error {|lu — ||, o has nearly O(p~') improvement over the H' error
l|ee — gplh,n' In the case where a and f are sufficiently smooth, i.e.,
a and v are large enough, even when d(m) = 2p + 1 with ¢; = p and
d(l}) = p + 1 the first term of the right side in (3.53) may dominate
the other terms, so that the rate of convergence for ||u — Uplly 18

asymptotically O(p~?). When a or f is not smooth enough we may
reduce the error |lu — ||, , by increasing the value of d(m) or d({)

respectively. In fact, using overintegrations I,,(m > p) or Ii{(I > p) we
recover the optimal rate of convergence for |[u — %, -

4. Numerical experiments
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We consider the following one-dimensional problem:

d
L@y =f o Q=(01]

with u(0) = u(1) =0.
Here, a and f are chosen in such a way that the exact solutionis u(z) =

e® sin(z) —e! sin(1)z. Of course, the simulations have no need for the
knowledge of the exact solution u.

EXAMPLE 4.1. We choose a(z) = 1/(x + w) for w > 0 and take
the mapping T(Z) = ((2+¢e)* - (1 —~Z+¢&)*)/((2+€)* —€*) with
a =205 and ¢ = 0.001, i w is near to zero, then a(z) and f(z) have
poles near to ¢ = 0 in the original problem. Hence we need the over-
integrations L,, and L; in both of the stiffness matrix and the load
vector. When we choose w = 0.001,the H!(Q) and L,(f)-error
results in Figure4.1.1 and 4.1.2 respectively, follow under the case
where Ly,(m = 1000) and L;(I > p).

We consider the following two-dimensional problem:
—div(aVu)=f on Q C R? withu(z)=0onT.

EXAMPLE 4.2. In the case where the domain Q is the trapezoid
with vertices A = (0,0), B = (2,0), C = (0,1), D = (1, 1), we consider
mapping 7' : (Zy, 52) € & — (z1,22) € Qgivenby z; = (F:1+1)(3—
T3)/4, =z = (T2 +1)/2. We choose a(z1,2,), f(z1,22) in such a
way that u(z1,22) = 2129 (21 + 22 — 2) (e(*2~1) — 1). In particular,
we take a(z1,22) = 1/(z; + w) with w > 0. If w is near to zero, then
a(xy, ) has a singularity near to the x,-axis, and also f is singular.
Hence, even if the mapping T is smooth enough, @4,, and J f are not
sufficiently smooth, which is caused by the original problem. To obtain
optimal results we may use overintegrations L, and L;. When w =
0.05, Figure4.2.1 and 4.2.2 show the results in the case where L,,(m =
50) and L;(l > p + 1) are used.
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