ON THE JOINT MAXIMAL NUMERICAL RANGES

Young Sik Park and Cheon Seoung Ryoo

1. Introduction

Let $B(\mathcal{H})$ be the algebra of bounded linear operators on a complex Hilbert space \mathcal{H} and let $A=\left(A_{1}, A_{1}, \cdots, A_{n}\right)$ be an n-tuple of operators on \mathcal{H}. By an operator-family we shall mean an n-tuple of operators and denote the set if all operator-families by $B(\mathcal{H})^{n}$.

For $A=\left(A_{1}, A_{1}, \cdots, A_{n}\right) \in B(\mathcal{H})^{n}$ and $\|A x\|=\left(\sum_{i=1}^{n}\left\|A_{1} x\right\|^{2}\right)^{1 / 2}$.
M. Cho [2] introduced the joint maximal numerical range $W_{o}(A)$ of an n-tuple of bounded linear operators on a Hilbert space $\mathcal{H} ; W_{o}(A)=$ $\left\{\lambda:\left(\left(A_{1} x_{k}, x_{k}\right),\left(A_{2} x_{k}, x_{k}\right), \cdots,\left(A_{n} x_{k}, x_{k}\right)\right) \rightarrow \lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)\right.$, $\left\|x_{k}\right\|=1$ and $\left.\left\|A x_{k}\right\| \rightarrow\|A\|\right\}$, where $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right) \in \mathbb{C}^{n}$.

Symbols $W(A), \sigma(A), \sigma_{a}(A)$ and $\sigma_{\pi}(A)$ are used respectively for the joint numerical range [3], the joint spectrum [5], the joint approximate point spectrum[1] and the reducing joint approximate point spectrum [3]. If $z=\left(z_{1}, z_{2}, \cdots, z_{n}\right)$, then $|z|=\left(\sum_{i=1}^{n}\left|z_{i}\right|^{2}\right)^{1 / 2}$.

The joint operator norm $\|A\|$ of A is defined as

$$
\|A\|=\sup _{\|x\| \leq 1}\|A x\|=\sup _{\|x\| \leq 1}\left(\sum_{i=1}^{n}\left\|A_{1} x\right\|^{2}\right)^{1 / 2}
$$

Clearly, $\|A\| \leq\left(\sum_{t=1}^{n}\left\|A_{2}\right\|^{2}\right)^{1 / 2}$.
Since $\sum_{n=1}^{n}\left\|A_{2} x\right\|^{2}=\left(\sum_{t=1}^{n} A_{1}^{*} A_{2} x, x\right),\|A\|=\left\|\left(\sum_{t=1}^{n} A_{i}^{*} A_{2}\right)^{1 / 2}\right\|=$ $\left.\| \sum_{3=1}^{n} A_{2}^{*} A_{2}\right)^{1 / 2} \|^{1 / 2}$.

And $W_{o}(A)$ is a nonempty closed subset of the closure of the joint numerical ranges $\overline{W(A)}$ of A.

We say that an n-tuple $A=\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ has a convex propertty (*) if, for any points $\lambda=(A x, x), \mu=(A y, y) \in W_{o}(A)$ and for any μ on the line segment jointing λ and μ, there exist complex numbers α, β such that $\|\alpha x+\beta y\|=1$ and $(A(\alpha x+\beta y), \alpha x+\beta y)=\mu$.

So far it is known that the joint maximal numerical range $W_{o}(A)$ of $A=\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ is a convex in the following cases [2]:
(1) $A=\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ is an n-tuple of commuting nomal operators,
(2) $A=\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ is an n-tuple of Toeplitz operators and
(3) $A=\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ is a commuting n-tuple of operators on a two-dimensional Hilbert space.
Then A has a convex property (*).

2. Some results

In [4], G.Garske proved that if λ is an extreme point of $\overleftarrow{W(A)}$, the following statement ($* *$) is true:
(**) Let $\left\{x_{k}\right\}$ be a sequence of unit vectors in \mathcal{H} weakly converging to $x \in \mathcal{H}$ such that $\left(A x_{k}, x_{k}\right) \rightarrow \lambda$.

Then either $x=0$ of $\left(A \frac{x}{\|x\|}, \frac{x}{\|x\|}\right)=\lambda$. Motivated by a convex property (\star) of $A \in B(\mathcal{H})^{n}$ and G. Garske's result [4], we give the following:

Tileorem 1. Let $A=\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ be an n-tuple of isometric operators with a convex propertty ($*$).

If $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots \lambda_{n}\right)$ is an extreme point of $W_{o}(A)$, then the following statement is true:

Let $\left\{x_{k}\right\}$ be a sequence of unit vectors in weakly converging to $x \in \mathcal{H}$ such that $\left(A_{1} x_{k}, x_{k}\right) \rightarrow \lambda_{1}$ for each $?=1,2, \cdots, n$ then either $x=0$ or $\left(A \frac{x}{\|\lambda\|}, \frac{x}{\|2\|}\right)=\lambda$.

Proof. Let $y_{h}=x_{k}-x$. Then $y_{h} \rightarrow 0$ weakly and $\left\|y_{k}\right\|^{\|} \leq 2$ since $\|x\| \leq 1$.

So we may assume by passing to a subsequence, if necessary, that there is a real number $\epsilon \geq 0$ such that $\left\|y_{k}\right\| \rightarrow \epsilon$ and assume, without loss of generality, that $\left\|A_{i}\right\|=1$ for each $i=1,2, \cdots, n$. Now

$$
\begin{aligned}
& \sum_{i=1}^{n}\left\|A_{2} x_{k}\right\|^{2} \\
& =\sum_{i=1}^{n}\left\{\left(A_{i}^{*} A_{i} y_{k}, y_{k}\right)+\left(A_{i}^{*} A_{i} x, y_{k}\right)+\left(y_{k}, A_{2}^{*} A_{i} x\right)+\left(A_{i}^{\star} A_{i} x, x\right)\right\}
\end{aligned}
$$

and $\left(A_{1}, x_{k}, x_{k}\right)=\left(A_{1} y_{k}, y_{k}\right)+\left(A_{1} y_{h}, x\right)+\left(A_{1} x, y_{k}\right)+\left(A_{2} x, x\right)$.
Since $y_{k} \rightarrow 0$ weakly and each A_{i} is an isometry with $\left\|A_{2}\right\|=1$ for $i=1,2, \cdots, n$ we see that $1=\epsilon^{2}+\|x\|^{2}$ and $\left(A_{2} y h, y_{h}\right) \rightarrow \lambda_{2}-\left(A_{2} x, x\right)$ since $\left(A_{3} x_{k}, x_{k}\right) \rightarrow \lambda_{i}$ for each $\imath=1,2, \cdots, n$.

If $\epsilon=0$, then $\|x\|=1$ and $\lambda_{2}=\left(A_{1} x, x\right)$ since $\left(A_{i} y_{h}, y_{k}\right) \rightarrow 0$.
Suppose that $\epsilon \neq 0$. We let $\mu_{h}=\left(A z_{k}, z_{k}\right)$ with $\left\|z_{h}\right\|=1$ such that $\mu_{k} \rightarrow \alpha=\left(A \frac{x}{\|i\|}, \frac{x}{\|x\|}\right)=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$, where $\alpha_{i}=\left(A_{1} \frac{x}{\|x\|}, \frac{x}{\|x\|}\right)$ and let $\mu_{k}=\left(A \frac{y_{k}}{\left\|y_{k}\right\|}, \frac{y_{k}}{\left\|u_{4}\right\|}\right)$ for all k such that $y_{k} \neq 0$.

Since each A_{1} is an isometry, we have $\alpha_{2} \in W_{o}\left(A_{2}\right)$ for each $i=$ $1,2, \cdots, n$ and the sequence $\left\{\mu_{k}\right\}$ in $W(A)$ converges to some $\beta=$ $\left(\beta_{i}, \beta_{2}, \cdots, \beta_{n}\right) \in \| F_{o}(A)$, and so $\beta_{i} \in W_{o}\left(A_{1}\right)$ and $\lambda_{i}=\epsilon^{2} \beta+\|x\|^{2} \alpha_{i}$, for each $i=1,2,3, \cdots, n$ since $W_{o}(A)$ is a convex.

Since an n-tuple $A=\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ has a convex property ($*$), we have $\lambda=\epsilon^{2} \beta+\|x\| \alpha$, where $x_{k}=\epsilon^{2} \frac{y_{k}}{\left\|y_{k}\right\|}+\|x\|^{2} z_{k}$.

This means that λ lies on the segment from α to β.
Since λ is an extrem point of $W_{o}(A)$, we conclude $\lambda=\alpha$ or $\lambda=\beta$.
In the later case, we have $\left(1-\epsilon^{2}\right) \lambda=\|x\|^{2} \alpha$, and this gives $\lambda=\alpha=$ $\left(A \frac{x}{\|2\|}, \frac{x}{\|x\|}\right)$.

In general, a lage number of important properties of $W(A)$ fail to hold $W_{o}(A)$. For example, we shall show Theorem 3.

Lemma 2. For an n-tuple of operators $A=\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ if $0 \in W V_{o}(A)$, then $\|A\|^{2}+|\lambda|^{2} \leq\left\|A+\lambda^{2}\right\|$ for all $\lambda \in \mathbb{C}^{n}$.

Proof. If $0 \in W_{o}(A)$, then there exists $x_{k} \in \mathcal{H},\left\|x_{k}\right\|=1$ such that

$$
\left\|(A+\lambda) X_{k}\right\|^{2}
$$

$$
=\sum_{i=1}^{n}\left\|\left(A_{i}+\lambda_{i}\right) x_{k}\right\|^{2}
$$

$$
=\sum_{i=1}^{n}\left(\left(A_{2}+\lambda_{2}\right)^{\star}\left(A_{2}+\lambda_{2}\right) x_{h}, x_{h}\right)
$$

$$
=\sum_{i=1}^{n}\left(\left(A_{2}^{\star} A_{1} x_{k}, x_{k}\right)+\left(A_{2}^{\star} \lambda x_{h}, x_{k}\right)+\left(\lambda_{i}^{\star} A_{1} x_{k}, x_{k}\right)+\left|\lambda_{i}\right|^{2}\right)
$$

$$
=\sum_{i=1}^{n}\left\|A x_{k}\right\|^{2}+\sum_{i=1}^{n} 2 R e \lambda_{i}\left(A_{i} x_{k}, x_{k}\right)+\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} \rightarrow\|A\|^{2}+|\lambda|^{2}
$$

Hence

$$
\|A+\lambda\|^{2} \geq\|A\|^{2}+|\lambda|^{2}
$$

for all $\lambda \in \mathcal{C}^{n}$.
Theorem 3. The jointly maximal numerical range $W_{o}(A)$ of A is not translation-invariant unless A is scalar.

Proof. We may assume that $W_{o}(A+z)=W_{o}(A)+z$ for all z and $0 \in W_{o}(A)$.

Let $w \in W_{o}(A)$ and $w+z \in W_{o}(A+z)$. There exist sequence $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ of unit vector in \mathcal{H} such that

$$
\begin{aligned}
\left(A y_{k}, y_{k}\right) & =\left(\left(A_{1} y_{k}, y_{k}\right),\left(A_{2} y_{k}, y_{k}\right),\left(A_{3} y_{k}, y_{k}\right), \cdots,\left(A_{n} y_{k}, y_{k}\right)\right) \\
& \rightarrow w=\left(w_{1}, w_{2}, w_{2}, w_{3}, \cdots, w_{n}\right)
\end{aligned}
$$

and

$$
\left\|-4 y_{h}\right\|=\left(\sum_{i=1}^{n}\left\|-A_{1} y_{h}\right\|^{2}\right)^{1 / 2} \rightarrow \mid A \| .
$$

$$
\begin{aligned}
((A & \left.+z) x_{k}, x_{k}\right) \\
& =\left(\left(A_{1}+z_{1} x_{h}, x_{h}\right), \cdots,\left(A_{n}+z_{n} x_{h}, x_{k}\right)\right) \\
& =\left(\left(A_{1} x_{k}, x_{k}\right)+\left(z_{1} x_{k}, x_{k}\right), \cdots,\left(A_{n} x_{h}, x_{k}\right)+\left(z_{n} x_{k}, x_{k}\right)\right) \\
& =\left(\left(A_{1} x_{h}, x_{h}\right), \cdots,\left(A_{n} x_{k}, x_{k}\right)\right)+\left(\left(z_{1} x_{k}, x_{h}\right), \cdots,\left(z_{n} x_{k}, x_{k}\right)\right) \\
& \rightarrow v+z
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.\left\|(A+z) x_{k}\right\|=\left(\sum_{i=1}^{n} \| A_{i}+z_{i}\right) x_{k} \|^{2}\right)^{1 / 2} \\
& \rightarrow\|A+z\|=\sup \left\{\left(\sum_{i=1}^{n}\left\|\left(A_{i}+z_{i}\right) x\right\|^{2}\right)^{1 / 2}:\|x\|=1\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{i=1}^{n}\left\|A_{2} x_{k}\right\|^{2} \\
& =\sum_{i=1}^{n}\left\|\left(A_{i}+z_{i}\right) x_{k}\right\|^{2}-\sum_{i=1}^{n}\left|z_{i}\right|^{2}-\sum_{i=1}^{n} 2 P \epsilon \overline{z_{l}}\left(A_{t} x_{h}, x_{k}\right)
\end{aligned}
$$

We have

$$
\|-A\|^{2} \geq\|(A+z)\|^{2}-|z|^{2}-\sum_{i=1}^{n} 2 R \epsilon \overline{z_{2}}\left(A_{1} x_{h}, x_{k}\right)
$$

Since $0 \in V_{o}(A)$ and by Lemma 2 , we obtain that

$$
\|A\|^{2}+\left\{\left.z\right|^{2}=\|A+z\|^{2}\right.
$$

for all $z \in \mathbb{C}^{n}$
Hence it implies that

$$
\begin{aligned}
\|\cdot A\|^{2} & =\sup \left\{\sum_{i=1}^{n}\left\|A_{i} x\right\|^{2}:\|x\|=1\right\} \\
& =\sup \left\{\sum_{i=1}^{n}\left\|\left(A_{i}+z_{z}\right) x\right\|^{2}:\|x\|=1\right\} \\
& =\sup \left\{\sum_{i=1}^{n}\left(\left(\left(A_{i}+z_{i}\right)^{*}\left(A_{i}+z_{i}\right) x, x\right)-\left|z_{2}\right|^{2}\right):\|x\|=1\right\} \\
& =\sup \left\{\sum_{i=1}^{n}\left\|A_{i} x\right\|^{2}+\sum_{i=1}^{n} 2 R \epsilon \overline{z_{i}}\left(A_{i} x, x\right):\|x\|=1\right\} \\
& \geq 2 \sup \left\{\sum_{i=1}^{n} 2 R c \overline{z_{i}}\left(A_{i} x, x\right): \mid x \|=1\right\}
\end{aligned}
$$

for all $z \in \mathbb{C}^{n}$.

Let $z=\left(\frac{\left\|A_{1} x\right\|^{2}}{\left(x, A_{1} x\right)}, \frac{\left\|A_{2} x\right\|^{2}}{\left(x, \mathcal{A}_{2} x\right)}, \cdots, \frac{\left\|A_{n 2}\right\|^{2}}{\left(x, A_{n} x\right)}\right)$.
Hence

$$
\begin{aligned}
\|A\|^{2} & \geq 2 \sup \left\{\sum_{i=1}^{n} 2 \operatorname{Re} \overline{z_{1}}\left(A_{1} x, x\right):\|x\|=1\right\} \\
& =2 \sup \left\{\sum_{i=1}^{n} \operatorname{Re}\left(\frac{\left\|A_{1} x\right\|^{2}}{\left(x, A_{i} x\right)}\left(A_{1} x, x\right)\right):\|x\|=1\right\} \\
& =2\|A\|^{2}
\end{aligned}
$$

So that $A=\left(A_{1}, A_{2}, \cdots, A_{n}\right)=0$.
A.B. Patel and S.M. Patel [G, Example 1] showed that z need not belong to $\sigma_{\pi}(A)$ though $z \in \overline{W(A)}$ belongs to $\sigma_{n}(A)$.

In Theoren 5 and Theorem 6, we shall give the conditions to be a joint approximate eigen-value $z \in W_{o}(A)$ and a reducing joint approximate eigen-value of $z \in W_{o}(A)$ of A, respectively. Also it is easy to show that z need not belong to $\sigma_{\pi}(A)$ even z belong to $\sigma_{a}(A)$.

Lemma 4 [3]. Let $A=\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ be a commuting n-tuple of operators If $z=\left(z_{1}, z_{2}, \cdots, z_{n}\right)$ belongs to $\sigma(A)$ such that $\left|z_{1}\right|=\left\|A_{2}\right\|$ for each $i=1,2, \cdots, n$, then z is a reducing joint approximate eigenvalue of A

Tifcorcm 5. Let $A=\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ be an n-tuple of operators. If $z \in W_{0}(A)$ and $\mid \tilde{\|}=\|A\|$, then z is a joint approximate eigen-value of A

Pronf. By hypothesis, there exists a sequence $\left\{x_{k}\right\}$ of unit vectors in \mathcal{H} for which $\left(A_{1} x_{h}, x_{h}\right) \rightarrow z_{i}$ for $\imath=1,2, \cdots, n$, and $\left\|A x_{k}\right\| \rightarrow\|A\|$. Then we have

$$
\left.\sum_{i=1}^{n} \| A_{2} x_{h}, x_{k}\right) \overline{z_{2}} \rightarrow\|A\|^{2}-|z|^{2}=0
$$

Thus $\left(A_{1} x_{k}, z_{z} x_{k}\right) \rightarrow 0$, and so $(A-z I) x_{k} \rightarrow 0$. Therefore z belongs to $\sigma_{a}(.-1)$.

Tifeorem 6. Let $A=\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ be an commuting n-tuple of operators If $z=\left(z_{1}, z_{2}, \cdots z_{n}\right) \in W_{o}(A)$ and $\left|z_{2}\right|=\left\|A_{i}\right\|$ for $i=$ $1,2,3, \cdots, n$, then \approx is a reducing joint approximate eigen-value of A.

Proof. If $z=\left(z_{1}, z_{2}, \cdots z_{n}\right) \in W_{o}(-4)$, then there exists a sequence $\left\{x_{k}\right\}$ of unit vectors in \mathcal{H} such that $\left(A, x_{k}, x_{h}\right) \rightarrow z_{2}$ for $i=1,2, \cdots, n$ and $\left\|A x_{h}\right\| \rightarrow\|-A\|$. Therefore, we have

$$
\begin{aligned}
& \sum_{t=1}^{n}\left\|-A_{2} x_{k}-z_{\lambda} x_{h}\right\|^{2} \\
& \quad=\sum_{t=1}^{n}\left\|-i_{1} x_{k}\right\|^{2}+\sum_{t=1}^{n}\left|z_{i}\left\|^{2}-2 \operatorname{Re} \sum_{t=1}^{n}\left(A, x_{h}, x_{k}\right) \overline{z_{t}} \rightarrow\right\| A \|^{2}-|z|^{2}\right.
\end{aligned}
$$

Since

$$
\left(\sum_{i=1}^{n}\left\|A_{i}\right\|^{2}\right)^{1 / 2} \geq \operatorname{sip}\left\{\left(\sum_{i=1}^{n}\left\|A_{i} x\right\|^{2}\right)^{1 / 2}: x \in \mathcal{H} \text { and }\|x\|=1\right\}=\|A\|,
$$

it is clear that

$$
\|A\|^{2}-\sum_{i=1}^{n}\left|z_{2} x\right|^{2} \leq \sum_{i=1}^{n}\left\|A_{i}\right\|^{2}-\sum_{i=1}^{n}\left|z_{2}\right|^{2}=0
$$

, and so $z \in \sigma(A)$. Hence it follows from Lemma 4 that z is a reducing joint approximate eigen-value of A.

References

1 .J Bunce, The gont spotitin of commating non-normal operators, Proc Amet Math Soc 29 (1971), 499-50.5
2. A Chō, Remathy on the gont marmal namerval ranges, Glanssnik Mathematick: 23(43) (1988). 339-343
3 A T Dash, A note on jont apprommate pont spectrum, Mimeographed lecture notes L'meesity of Guclph and Indian Umveraty, 1972.
4 \{ Garske. The boundary of the numemcal range of an operator, J Math. Anal Appl 68 (1979), 603-607
5. R E Ifarte, Spectral mappang theorem, Pioc Roy Insh Acad. 7(72) (1972), 89-107
6. A B Patel and S Mi Patel, Joznt norm, Gasmk Mathmatickı 20(40) (1985), 03-98

Department of Mathematics
University of Ulsan
Ulkan 680-749. K゙otea

Department of Aathematics
Iivushal University
Fukinka 812, Japan

