ON THE JOINT MAXIMAL NUMERICAL RANGES

YOUNG SIK PARK AND CHEON SEOUNG RYOO

1. Introduction

Let $B(\mathcal{H})$ be the algebra of bounded linear operators on a complex Hilbert space \mathcal{H} and let $A = (A_1, A_1, \dots, A_n)$ be an *n*-tuple of operators on \mathcal{H} . By an operator-family we shall mean an *n*-tuple of operators and denote the set if all operator-families by $B(\mathcal{H})^n$.

For $A = (A_1, A_1, \dots, A_n) \in B(\mathcal{H})^n$ and $||Ax|| = (\sum_{i=1}^n ||A_ix||^2)^{1/2}$.

M. Cho [2] introduced the joint maximal numerical range $W_o(A)$ of an *n*-tuple of bounded linear operators on a Hilbert space \mathcal{H} ; $W_o(A) =$ $\{\lambda : ((A_1x_k, x_k), (A_2x_k, x_k), \cdots, (A_nx_k, x_k)) \to \lambda = (\lambda_1, \lambda_2, \cdots, \lambda_n), \|x_k\| = 1 \text{ and } \|Ax_k\| \to \|A\|\}$, where $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_n) \in \mathbb{C}^n$.

Symbols W(A), $\sigma(A)$, $\sigma_a(A)$ and $\sigma_{\pi}(A)$ are used respectively for the joint numerical range [3], the joint spectrum [5], the joint approximate point spectrum [1] and the reducing joint approximate point spectrum [3]. If $z = (z_1, z_2, \dots, z_n)$, then $|z| = (\sum_{i=1}^n |z_i|^2)^{1/2}$.

The joint operator norm ||A|| of A is defined as

$$||A|| = \sup_{||x|| \le 1} ||Ax|| = \sup_{||x|| \le 1} (\sum_{i=1}^{n} ||A_ix||^2)^{1/2}.$$

Clearly, $||A|| \le (\sum_{i=1}^{n} ||A_i||^2)^{1/2}$. Since $\sum_{i=1}^{n} ||A_ix||^2 = (\sum_{i=1}^{n} A_i^*A_ix, x), ||A|| = ||(\sum_{i=1}^{n} A_i^*A_i)^{1/2}|| = ||\sum_{i=1}^{n} A_i^*A_i|^{1/2} ||^{1/2}$.

And $W_o(A)$ is a nonempty closed subset of the closure of the joint numerical ranges $\overline{W(A)}$ of A.

We say that an *n*-tuple $A = (A_1, A_2, \dots, A_n)$ has a convex property (*) if, for any points $\lambda = (Ax, x), \ \mu = (Ay, y) \in W_o(A)$ and for any μ on the line segment jointing λ and μ , there exist complex numbers α, β such that $\|\alpha x + \beta y\| = 1$ and $(A(\alpha x + \beta y), \alpha x + \beta y) = \mu$.

Received November 18,1996

So far it is known that the joint maximal numerical range $W_o(A)$ of $A = (A_1, A_2, \dots, A_n)$ is a convex in the following cases [2]:

- (1) $A = (A_1, A_2, \dots, A_n)$ is an *n*-tuple of commuting nomal operators,
- (2) $A = (A_1, A_2, \dots, A_n)$ is an *n*-tuple of Toeplitz operators and
- (3) $A = (A_1, A_2, \dots, A_n)$ is a commuting *n*-tuple of operators on a two-dimensional Hilbert space.

Then A has a convex property (*).

2. Some results

In [4], G.Garske proved that if λ is an extreme point of $\overline{W(A)}$, the following statement (**) is true:

(**) Let $\{x_k\}$ be a sequence of unit vectors in \mathcal{H} weakly converging to $x \in \mathcal{H}$ such that $(Ax_k, x_k) \to \lambda$.

Then either x = 0 of $(A \frac{x}{\|x\|}, \frac{x}{\|x\|}) = \lambda$. Motivated by a convex property (\star) of $A \in B(\mathcal{H})^n$ and G. Garske's result [4], we give the following:

THEOREM 1. Let $A = (A_1, A_2, \dots, A_n)$ be an n-tuple of isometric operators with a convex propertity (\star) .

If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ is an extreme point of $W_o(A)$, then the following statement is true:

Let $\{x_k\}$ be a sequence of unit vectors in weakly converging to $x \in \mathcal{H}$ such that $(A_i x_k, x_k) \to \lambda_i$ for each $i = 1, 2, \dots, n$ then either x = 0 or $(A \frac{x}{\|x\|}, \frac{x}{\|x\|}) = \lambda$.

Proof. Let $y_k = x_k - x$. Then $y_k \to 0$ weakly and $||y_k|| \le 2$ since $||x|| \le 1$.

So we may assume by passing to a subsequence, if necessary, that there is a real number $\epsilon \ge 0$ such that $||y_k|| \to \epsilon$ and assume, without loss of generality, that $||A_i|| = 1$ for each $i = 1, 2, \dots, n$. Now

$$\sum_{i=1}^{n} \|A_{i}x_{k}\|^{2}$$

=
$$\sum_{i=1}^{n} \{ (A_{i}^{*}A_{i}y_{k}, y_{k}) + (A_{i}^{*}A_{i}x, y_{k}) + (y_{k}, A_{i}^{*}A_{i}x) + (A_{i}^{*}A_{i}x, x) \}$$

294

and $(A_i x_k, x_k) = (A_i y_k, y_k) + (A_i y_k, x) + (A_i x, y_k) + (A_i x, x).$

Since $y_k \to 0$ weakly and each A_i is an isometry with $||A_i|| = 1$ for $i = 1, 2, \dots, n$ we see that $1 = \epsilon^2 + ||x||^2$ and $(A_i y_k, y_k) \to \lambda_i - (A_i x, x)$ since $(A_i x_k, x_k) \to \lambda_i$ for each $i = 1, 2, \dots, n$.

If $\epsilon = 0$, then ||x|| = 1 and $\lambda_i = (A_i x, x)$ since $(A_i y_k, y_k) \to 0$.

Suppose that $\epsilon \neq 0$. We let $\mu_k = (Az_k, z_k)$ with $||z_k|| = 1$ such that $\mu_k \to \alpha = (A \frac{x}{\|x\|}, \frac{x}{\|x\|}) = (\lambda_1, \lambda_2, \cdots, \lambda_n)$, where $\alpha_i = (A_i \frac{x}{\|x\|}, \frac{x}{\|x\|})$ and let $\mu_k = (A \frac{y_i}{\|y_k\|}, \frac{y_k}{\|y_k\|})$ for all k such that $y_k \neq 0$.

Since each A_i is an isometry, we have $\alpha_i \in W_o(A_i)$ for each $i = 1, 2, \dots, n$ and the sequence $\{\mu_k\}$ in W(A) converges to some $\beta = (\beta_1, \beta_2, \dots, \beta_n) \in W_o(A)$, and so $\beta_i \in W_o(A_i)$ and $\lambda_i = \epsilon^2 \beta + ||x||^2 \alpha_i$, for each $i = 1, 2, 3, \dots, n$ since $W_o(A)$ is a convex.

Since an *n*-tuple $A = (A_1, A_2, \dots, A_n)$ has a convex property (*), we have $\lambda = \epsilon^2 \beta + ||x|| \alpha$, where $x_k = \epsilon^2 \frac{y_k}{\|y_k\|} + \|x\|^2 z_k$.

This means that λ lies on the segment from α to β .

Since λ is an extrem point of $W_o(A)$, we conclude $\lambda = \alpha$ or $\lambda = \beta$. In the later case, we have $(1 - \epsilon^2)\lambda = ||x||^2 \alpha$, and this gives $\lambda = \alpha = (A \frac{\lambda}{\|\mathbf{1}\|}, \frac{\mathbf{r}}{\|\mathbf{2}\|})$.

In general, a large number of important properties of W(A) fail to hold $W_o(A)$. For example, we shall show Theorem 3.

LEMMA 2. For an *n*-tuple of operators $A = (A_1, A_2, \dots, A_n)$ if $0 \in W_o(A)$, then $||A||^2 + |\lambda|^2 \leq ||A + \lambda^2||$ for all $\lambda \in \mathbb{C}^n$.

Proof. If $0 \in W_o(A)$, then there exists $x_k \in \mathcal{H}$, $||x_k|| = 1$ such that $||(A + \lambda)X_k||^2$

$$= \sum_{i=1}^{n} ||(A_{i} + \lambda_{i})x_{k}||^{2}$$

$$= \sum_{i=1}^{n} ((A_{i} + \lambda_{i})^{*}(A_{i} + \lambda_{i})x_{k}, x_{k})$$

$$= \sum_{i=1}^{n} ((A_{i}^{*}A_{i}x_{k}, x_{k}) + (A_{i}^{*}\lambda x_{k}, x_{k}) + (\lambda_{i}^{*}A_{i}x_{k}, x_{k}) + |\lambda_{i}|^{2})$$

$$= \sum_{i=1}^{n} ||Ax_{k}||^{2} + \sum_{i=1}^{n} 2Re\lambda_{i}(A_{i}x_{k}, x_{k}) + \sum_{i=1}^{n} |\lambda_{i}|^{2} \rightarrow ||A||^{2} + |\lambda|^{2}.$$

Hence

$$||A + \lambda||^2 \ge ||A||^2 + |\lambda|^2$$

for all $\lambda \in \mathcal{C}^n$.

THEOREM 3. The jointly maximal numerical range $W_o(A)$ of A is not translation-invariant unless A is scalar.

Proof. We may assume that $W_o(A + z) = W_o(A) + z$ for all z and $0 \in W_o(A)$.

Let $w \in W_o(A)$ and $w + z \in W_o(A + z)$. There exist sequence $\{x_k\}$ and $\{y_k\}$ of unit vector in \mathcal{H} such that

$$(Ay_k, y_k) = ((A_1y_k, y_k), (A_2y_k, y_k), (A_3y_k, y_k), \cdots, (A_ny_k, y_k))$$

$$\to w = (w_1, w_2, w_2, w_3, \cdots, w_n)$$

and

$$||Ay_k|| = (\sum_{i=1}^n ||A_iy_k||^2)^{1/2} \to |A||.$$

$$((A + z)x_k, x_k) = ((A_1 + z_1x_k, x_k), \cdots, (A_n + z_nx_k, x_k)) = ((A_1 + z_1x_k, x_k), \cdots, (A_nx_k, x_k) + (z_nx_k, x_k)) = ((A_1x_k, x_k), \cdots, (A_nx_k, x_k)) + ((z_1x_k, x_k), \cdots, (z_nx_k, x_k)) \to w + z$$

and

$$\|(A + z)x_k\| = (\sum_{i=1}^n \|A_i + z_i)x_k\|^2)^{1/2}$$

$$\to \|A + z\| = \sup\{(\sum_{i=1}^n \|(A_i + z_i)x\|^2)^{1/2} : \|x\| = 1\}$$

and

$$\sum_{i=1}^{n} ||A_{i}x_{k}||^{2}$$

=
$$\sum_{i=1}^{n} ||(A_{i} + z_{i})x_{k}||^{2} - \sum_{i=1}^{n} |z_{i}|^{2} - \sum_{i=1}^{n} 2Re\overline{z_{i}}(A_{i}x_{k}, x_{k}).$$

296

We have

$$||A||^{2} \geq ||(A+z)||^{2} - |z|^{2} - \sum_{i=1}^{n} 2Re\overline{z_{i}}(A_{i}x_{k}, x_{k}).$$

Since $0 \in W_o(A)$ and by Lemma 2, we obtain that

$$\|A\|^2 + |z|^2 = \|A + z\|^2$$

for all $z \in \mathbb{C}^n$

Hence it implies that

$$||A||^{2} = \sup\{\sum_{i=1}^{n} ||A_{i}x||^{2} : ||x|| = 1\}$$

= $\sup\{\sum_{i=1}^{n} ||(A_{i} + z_{i})x||^{2} : ||x|| = 1\}$
= $\sup\{\sum_{i=1}^{n} (((A_{i} + z_{i})^{*}(A_{i} + z_{i})x, x) - |z_{i}|^{2}) : ||x|| = 1\}$
= $\sup\{\sum_{i=1}^{n} ||A_{i}x||^{2} + \sum_{i=1}^{n} 2Re\overline{z_{i}}(A_{i}x, x) : ||x|| = 1\}$
 $\ge 2\sup\{\sum_{i=1}^{n} 2Re\overline{z_{i}}(A_{i}x, x) : |x|| = 1\}$

for all $z \in \mathbb{C}^n$. Let $z = (\frac{\|A_{12}\|^2}{(x,A_{12})}, \frac{\|A_{22}\|^2}{(x,A_{22})}, \cdots, \frac{\|A_{n2}\|^2}{(x,A_{n2})})$. Hence

$$\begin{split} \|A\|^2 &\geq 2 \sup\{\sum_{i=1}^n 2Re\overline{z_i}(A_ix, x) : \|x\| = 1\}\\ &= 2 \sup\{\sum_{i=1}^n Re(\frac{\|A_ix\|^2}{(x, A_ix)}(A_ix, x)) : \|x\| = 1\}\\ &= 2\|A\|^2 \end{split}$$

So that $A = (A_1, A_2, \dots, A_n) = 0$.

A.B. Patel and S.M. Patel [6, Example 1] showed that z need not belong to $\sigma_{\pi}(A)$ though $z \in \overline{W(A)}$ belongs to $\sigma_{e}(A)$.

In Theorem 5 and Theorem 6, we shall give the conditions to be a joint approximate eigen-value $z \in W_o(A)$ and a reducing joint approximate eigen-value of $z \in W_o(A)$ of A, respectively. Also it is easy to show that z need not belong to $\sigma_{\pi}(A)$ even z belong to $\sigma_{\alpha}(A)$.

LEMMA 4 [3]. Let $A = (A_1, A_2, \dots, A_n)$ be a commuting n-tuple of operators If $z = (z_1, z_2, \dots, z_n)$ belongs to $\sigma(A)$ such that $|z_i| = ||A_i||$ for each $i = 1, 2, \dots, n$, then z is a reducing joint approximate eigenvalue of A

THEOREM 5. Let $A = (A_1, A_2, \dots, A_n)$ be an n-tuple of operators. If $z \in W_o(A)$ and |z| = ||A||, then z is a joint approximate eigen-value of A

Proof. By hypothesis, there exists a sequence $\{x_k\}$ of unit vectors in \mathcal{H} for which $(A_i x_k, x_k) \to z_i$ for $i = 1, 2, \dots, n$, and $||Ax_k|| \to ||A||$. Then we have

$$\sum_{i=1}^{n} \|A_{i}x_{k}, x_{k}| \overline{z_{i}} \to \|A\|^{2} - |z|^{2} = 0.$$

Thus $(A_i x_k, z_i x_k) \to 0$, and so $(A - zI) x_k \to 0$. Therefore z belongs to $\sigma_a(A)$.

THEOREM 6. Let $A = (A_1, A_2, \dots, A_n)$ be an commuting *n*-tuple of operators If $z = (z_1, z_2, \dots, z_n) \in W_o(A)$ and $|z_i| = ||A_i||$ for $i = 1, 2, 3, \dots, n$, then z is a reducing joint approximate eigen-value of A.

Proof. If $z = (z_1, z_2, \dots, z_n) \in W_o(A)$, then there exists a sequence $\{x_k\}$ of unit vectors in \mathcal{H} such that $(A, x_k, x_k) \to z_i$ for $i = 1, 2, \dots, n$ and $||Ax_k|| \to ||A||$. Therefore, we have

$$\sum_{i=1}^{n} ||A_{i}x_{k} - z_{i}x_{k}||^{2}$$

= $\sum_{i=1}^{n} ||A_{i}x_{k}||^{2} + \sum_{i=1}^{n} |z_{i}|^{2} - 2Re \sum_{i=1}^{n} (A_{i}x_{k}, x_{k})\overline{z_{i}} \rightarrow ||A||^{2} - |z|^{2}.$

298

Since

$$\left(\sum_{i=1}^{n} \|A_i\|^2\right)^{1/2} \ge \sup\left\{\left(\sum_{i=1}^{n} \|A_i x\|^2\right)^{1/2} : x \in \mathcal{H} \text{and} \|x\| = 1\right\} = \|A\|,$$

it is clear that

$$||A||^{2} - \sum_{i=1}^{n} |z_{i}x|^{2} \le \sum_{i=1}^{n} ||A_{i}||^{2} - \sum_{i=1}^{n} |z_{i}|^{2} = 0$$

, and so $z \in \sigma(A)$. Hence it follows from Lemma 4 that z is a reducing joint approximate eigen-value of A.

References

- J. Bunce, The joint spectrum of commuting non-normal operators, Proc. Amer. Math. Soc. 29 (1971), 499-505
- 2. M Chō, Remarks on the joint maximal numerical ranges, Glanssnik Mathematicki 23(43) (1988). 339-343
- 3 A T Dash, A note on joint approximate point spectrum, Mimeographed lecture notes University of Guelph and Indian University, 1972.
- 4 G Garske, The boundary of the numerical range of an operator, J Math. Anal Appl 68 (1979), 605-607
- 5. R E Harte, Spectral mapping theorem, Pioc Roy Hish Acad. 7(72) (1972), 89-107
- A B. Patel and S. M. Patel, Joint norm, Grasnik Mathimaticki 20(40) (1985), 03-98

Department of Mathematics University of Ulsan Ulsan 680–749, Korea

Department of Mathematics Kyushu University Fukuoka 812, Japan