GLOBAL FORM OF A COMPLETE HYPERSURFACE OF $S^{n} \times S^{n}$

Silin,Yong Ho

0. Introduction

In 1973 , K. Yano[1] studied the differential geometry of $S^{n} \times S^{n}$ and introduced the structure equations of real hypersurface of $S^{n}(1 / \sqrt{2}) \times$ $S^{n}(1 / \sqrt{2})$.

In 1982, S.-S.Eum, U-H.Ki and Y.H.Kim [2] researched partially real hypersurfaces of $S^{n} \times S^{n}$ by using the concept of k-invariance.

In [3], the author found that the necessary and sufficient condition for a hypersurface of $S^{n} \times S^{n}$ being k-antiholomorphic and investigated its global properties

The purpose of the present paper is devoted to characterization of the global form of a complete hypersurface of $S^{n} \times S^{n}$.

In section 1 , we tecall the structure equations of hypersurfaces of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$.

In section 2, we have global forms of a complete hypersurface of $S^{n} \times S^{n}$ under some algebraic conditions.

1. Structure equations of hypersurfaces of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$

Let M be a hypersurface immersed isometrically in $S^{n}(1 / \sqrt{2}) \times$ $S^{n}(1 / \sqrt{2})$ as a submanifold of codimension 2 of $(2 n+2)$-dimensional Eucliclean space or real hypersurface of $(2 n+1)$-dimensional unit sphere $S^{2 n+1}$ (1) And we suppose that M is covered by the system of coordinate neighborhoods $\left\{\bar{V} ; \bar{x}^{a}\right\}$, where here and in the sequel, the indices a, b, c, d, \cdots run over the range $\{1,2, \cdots, 2 n-1\}$.

Since the immersion $\imath: M \rightarrow S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ is isometric, from the (f, g, u, v, λ)-structure defined on $S^{n} \times S^{n}$, we get the so-called ($f, g, u, v, w, \lambda, \mu, u$)-structure [2] given by

[^0]\[

$$
\begin{equation*}
f_{b}^{e} f_{e}^{a}=-\delta_{b}^{a}+u_{b} u^{a}+v_{b} v^{a}+w_{b} w^{a} \tag{1.1}
\end{equation*}
$$

\]

$$
\begin{align*}
f_{e}^{a} u^{e} & =-\lambda v^{a}+\mu w^{a} \\
f_{e}^{a} v^{e} & =\lambda u^{a}+\nu w^{a} \tag{1.2}\\
f_{e}^{a} w^{e} & =-\mu u^{a}-\nu v^{a}
\end{align*}
$$

or equivalently,

$$
\begin{align*}
& u_{e} f_{a}^{e}=\lambda v_{a}-\mu w_{a}, v_{e} f_{a}^{e}=-\lambda u_{a}-\nu w_{a}, w_{e} f_{a}^{e}=\mu u_{a}+\nu v_{a} \\
& u_{e} u^{e}=1-\lambda^{2}-\mu^{2}, u_{e} v^{e}=-\mu \nu, u_{e} w^{e}=-\lambda \nu, \tag{1.3}\\
& v_{e} v^{e}=1-\lambda^{2}-\nu^{2}, v_{e} v^{e}=\lambda \mu \\
& w_{e} w^{e}=1-\mu^{2}-\nu^{2}
\end{align*}
$$

where u_{a}, v_{a} and w_{a} are 1 -forms associated with u^{a}, v^{a} and w^{a} respectively given by $\psi_{a}=u^{b} g_{b a}, v_{a}=v^{b} g_{b a}$ and $w_{a}=v^{b} g_{b a}$, and $f_{b a}=f_{b}^{c} g_{c a}$ is skew-symmetric. Moreover, we obtain

$$
\begin{equation*}
\nabla_{c} \lambda=-2 v_{c}, \nabla_{c} \mu=w_{c}-\lambda k_{c}-l_{c e} u^{e}, \nabla_{c} \nu=k_{c e} w^{e}-l_{c e} v^{e} \tag{1.4}
\end{equation*}
$$

Finally, we introduce the followings.
REMARK [4]. If $\lambda^{2}+\mu^{2}+\nu^{2}=1$ on the hypersurface M, we see that $\mu=0, \nu=\operatorname{constant}(\neq 0), v_{c}=0$ and $\alpha=0$. And if the function λ vanishes on some open set, then we have $v_{c}=0$ and $\mu=0$. Moreover the 4 -form u_{b} never vanishes on an open set in M, in fact, if 1 -form u_{b} is zero on an open set in M, then $f_{c b}=0$, which contradict $n>1$.

Lemma 1.1 [3]. Let M be a hypersurface satisfying $k_{c e} f_{b}^{e}=k_{b e} f_{c}^{e}$ of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$. Then we have

$$
\lambda^{2}+\mu^{2}+\nu^{2}=1 \text { or } \mu^{2}+\mu^{2}+\alpha \mu \nu=0
$$

on M.

Lemand $1.2[3]$. Under the same assumptions as those stated in Lemma 1.1, M is k-antiholomorphic if and only if $\lambda^{2}+\mu^{2}=1$ holds at every point of M.

Theorem A [3]. Let M be a hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ with $(f, g, u, v, w, \lambda, \mu, \nu)$-structure satisfying $\lambda^{2}+\mu^{2}+\nu^{2}=1$. If M is a minimal hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$, then M is Sasakian \mathcal{C}-Einsteain manifold.

THEOREM B [3]. Let M be a k-antiholomorphic hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})(n>1)$ satisfying $k_{c}^{e} f_{t}^{a}+f_{c}^{e} k_{e}^{a}=0$. If M is minimal (or the square of length of the second fundamental tensor of M is not greater than $2(n-1)$ at every point of $M)$, then M as a submaifold of codimension 3 of a Euclidean $(2 n+2)$-space, is an intersection of complex cone with generator C and a $(2 n+1)$-dimensional sphere $S^{2 n+1}(1)$.

Tifeorem C [5]. If M is a k-invarinat hypersurface of $S^{n}(1 / \sqrt{2}) \times$ $S^{n}(1 / \sqrt{2})(n>1)$ satisfying

$$
l_{c}^{e} f_{e}^{h}+f_{c}^{e} l_{e}^{a}=0
$$

then M is totally geodesic M oreover, M is complete and M is $S^{n-1} \times$ S^{n}.

TIIEOREM D [5]. Let M be a k-invariant hypersurface of $S^{n}(1 / \sqrt{2}) \times$ $S^{\prime \prime}(1 / \sqrt{2})(n>1)$ satisfying

$$
l_{c}^{e} f_{e}^{a}-f_{c}^{e} l_{\epsilon}^{a}=0
$$

Then $M I$ is totally geodesic. Moreover, the hypersurface is complete and M is $S^{n-1} \times S^{n}$.

2. Global form of a complete hypersurface

In this section, we consider a hypersuface M of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ such that

$$
k_{c}^{\epsilon} f_{e}^{a}+f_{c}^{e} k_{e}^{a}=0, \quad l_{c}^{e} f_{e}^{a}+f_{c}^{e} l_{e}^{a}=0
$$

hold on M, or equivalently

$$
\begin{equation*}
k_{c e} f_{b}^{e}=k_{b e} f_{c}^{e} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
l_{c e} f_{b}^{e}=l_{b e} f_{c}^{e} \tag{2.2}
\end{equation*}
$$

Now, transvecting (2.1) with f_{a}^{b} and using (1.1), we find.

$$
l_{c e}\left(-\delta_{a}^{e}+u_{a} u^{e}+v_{a} v^{e}+w_{a} w^{e}=l_{b e} f_{\underline{c}}^{e} f_{a}^{b}\right.
$$

from which, taking the skew-symmetric part,

$$
\begin{align*}
& \left(l_{c e} u^{e}\right) u_{b}-\left(l_{b e} u^{e}\right) u_{c}+\left(l_{c e} v^{e}\right) v_{b} \tag{2.3}\\
& -\left(l_{b e} v^{e}\right) v_{c}+\left(l_{c e} w^{e}\right) w_{b}-\left(l_{b e} w^{e}\right) w_{c}=0
\end{align*}
$$

If we transvect $l_{c e} f_{b}^{e}$ witl $f^{c b}$, we get from (2.2)

$$
\begin{equation*}
l_{e}^{c}=l_{c b} u^{c} u^{b}+l_{c b} v^{c} v^{b}+l_{c b} w^{c} w^{b} \tag{2.4}
\end{equation*}
$$

because of (1.1)
From our assumption (2.1) and section 3 of [3], we get

$$
\begin{equation*}
\left(1-\mu^{2}-\nu^{2}\right) k_{c}=\theta w_{c}, \quad\left(1-\alpha^{2}\right) w_{c}=\theta k_{c} \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
k_{c e} w^{e}=-a w_{c} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\mu^{2}+\mu^{2}\right) k_{c}+(\mu+\alpha \nu) v_{c}+(\nu+\alpha \mu) u_{c}=0 \tag{2.7}
\end{equation*}
$$

Thus, according to Lemma 1.1, we may only consider the following two cases in which

$$
\begin{equation*}
\lambda^{2}+\mu^{2}+\nu^{2}=1 \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
\mu^{2}+\nu^{2}+2 \alpha \mu \nu=0 \tag{2.9}
\end{equation*}
$$

In the first place, we consider the case in which $\lambda^{2}+\mu^{2}+\nu^{2}=1$, then by Remark, we have $\alpha=0, \mu=0, \nu=\operatorname{constant}(\neq 0)$ and $v_{c}=0$.
So (2.7) is tumed out to be $u_{c}=-v k_{c}$.
Substituting this into the second expression of (1.2) and remembering the fact that $v_{c}=0$ and $\nu \neq 0$, we get

$$
\begin{equation*}
w_{c}=\lambda k_{c} . \tag{2.10}
\end{equation*}
$$

Therefore (1.4) with $\mu=0$ yields $l_{c c} z^{e}=0$ and hence $l_{c e} k^{e}=0$.
If we transvect l_{b}^{e} to (2.10), then

$$
l_{c e} w^{e}=0
$$

Using these facts, the equation (2 4) gives $l_{e}^{e}=0$, that is, the hypersurface is minimal.

According to Theorem A, M is, in this case, a minimal Sasakian \mathcal{C}-Einstein manifold.

Secondly, we consider the case in which $\mu^{2}+\nu^{2}+2 \alpha \mu \nu=0$. Then as was already shown in section of [3], we have, in this case

$$
\nu+\alpha \mu=0, \quad \mu+\alpha \nu=0
$$

which show that $\mu^{2}=\nu^{2}$. So (2.7) implies

$$
\begin{equation*}
\mu k_{\mathrm{c}}=0 \tag{2.11}
\end{equation*}
$$

If wo suppose that the hypersurface is not k-invariant, then $\mu=0$ and hence $\mu=0$

Thus the second equation of (1.4) reduces to

$$
\begin{equation*}
l_{c \varepsilon} u^{e}=(1-\theta \lambda) w_{c}, \tag{3.12}
\end{equation*}
$$

Whrre we have used (2.5) with $\mu=\nu=0$.
Since ν ranishes in this case, the third equation of (1.4) becomes

$$
\begin{equation*}
l_{c e} v^{e}=-\alpha w_{c} \tag{2.13}
\end{equation*}
$$

with the aid of (2.6).
Substituting (2.12) and (2.13) into (2.3), we find
$(1-\theta \lambda)\left(w_{c} w_{b}-w_{b} u_{c}\right)-a\left(w_{c} w_{b}-w_{b} v_{c}\right)+\left(l_{c e} w^{t}\right) w_{b}-\left(l_{b e} w^{e}\right) w_{c}=0$.
If we transvect this with $w^{c} v^{b}$ and take account of (1.3) with $\mu=$ $\nu=0$, we obtain $\lambda \alpha=0$, where we have used (2.13). Since λ can not be vanish because of Remark, we see that the function α vanishes identically, therefore by Lemma $12 \lambda^{2}=1$ and hence $u_{c}=0$, which is contradictory. Thus it follows from (2.11) that the hypersurface is invariant. So, as in the proof of Theorem C, M is totally geodesic.

Theordm 2.1. Let M be a hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ $(n>1)$ satisfying

$$
k_{c}^{e} f_{e}^{a}+f_{c}^{e} k_{\epsilon}^{a}=0, \quad l_{c}^{e} f_{e}^{a}+f_{c}^{e} l_{e}^{a}=0
$$

Then M is totally geodesic or a minimal Sasakian \mathcal{C}-Einstein manifold.
Combining Lemma 1.1, Theorem B and Theosem C, we have
Tineorem 2.2. Let M be a complete hypersurface of $S^{n}(1 / \sqrt{2}) \times$ $S^{n}(1 / \sqrt{2})(n>1)$ satisfying

$$
k_{c}^{\epsilon} f_{e}^{a}+f_{c}^{e} k_{e}^{a}=0, \quad l_{c}^{e} f_{e}^{a}+f_{c}^{e} l_{e}^{a}=0
$$

Then M is $S^{n} \times S^{n-1}$ or M as a submanifold of codimension 3 of Euclidean ($2 n+2$)-sphere is an intersection of a complex cone with generator C and a $(2 n+1)$-dimensional sphjcre $S^{2 n+1}(1)$.

Acording to Lemma 1.1, Theorem B and Theorem D, we have
Thicorem 2.3. Let M be a complete hypersuface of $S^{n}(1 / \sqrt{2}) \times$ $S^{n}(1 / \sqrt{2})(n>1)$ satisfying

$$
k_{c}^{e} f_{e}^{a}+f_{c}^{e} k_{e}^{a}=0, \quad l_{c}^{e} f_{e}^{a}+f_{c}^{e} l_{e}^{a}=0
$$

Then M is $S^{n} \times S^{n-1}$, or M as a submanifold of codimension 3 of a Euclidean $(2 n+2)$-space is an intersection of a complex cone with generator C and a $(2 n+1)$-dimensional sphere $S^{2 n+1}(1)$, that is, a Brieskorn manifold $B^{2 n-1}$.

References

1. Yaio,K, Differentral geometry of $S^{n} \times S^{n}$, J.Diff Geo 8 (1973), 181-206.

2 Eum,S -S ,U-H Ki and Y H.Kim, On hypersurfaces of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$, J Korean Math Soc 18 (1982), 109-122
3 Slun,Yong Ho, Structure of a Hypersurface ammersed in a product of two spheres, Pusan Kyŏngnam Math. J 11 (1) (1905), 87-113
4 Shm, Yong Ho and Kang, Tae Ho, Bneskorn manfold induced an hypersurface of a product of two spheres, Pusan Kyŏngnam Math J 11(2) (1995), 351-357.
5 Shan, Yong Ho, k - ${ }^{2}$ nvarvant Hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$, Pusan Kyŏngnam Math J 12(1) (1906), 107-117

Department of Mathematics
University of Ulsan
Ulsan 680-749, Korea

[^0]: Recerved November 15,1906.

