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GLOBAL FORM OF A COMPLETE
HYPERSURFACE OF 5" x S

SHIN,YonNG Ho

0. Introduction

In 1973, K. Yano[1] studied the differential geometry of $* x S™ and
introduced the structure equations of real hypersurface of $*(1/v/2) x
S™(1/V2).

In 1982, S.-§.FEum, U-H.Ki and Y.H.KKim {2] researched partially real
hypersurfaces of §" x 5™ by using the concept of k-invariance.

In [3], the author found that the necessary and sufficient condition
for a hypersurface of ™ x S™ being £-antiholomorphic and investigated
its global properties

The purpose of the present paper is devoted to characterization of
the global form of a complete hypersurface of S” x S™.

In scetion 1, we tecall the structure equations of hypersurfaces of
S™(1/V3) x §*(1/V3).

In section 2, we have global forms of a complete hypersurface of
S§™ x §" under some algebraic conditions.

1. Structure equations of hypersurfaces of $7(1/v2)xS*(1//?2)

Let Al be a hypersurface immersed isometrically in S™(1/v/2) x
S$"(1/V?2) as a submanifold of codimension 2 of (2n + 2)-dimensional
Eueclidean space or real hypersurface of (22+1)-dimensional unit sphere
527+1(1) And we suppose that M is cavered by the system of coordi-
nate neiphborhoods {17; 7%}, where here and in the sequel, the indices
a,b,c,d,-- run over the range {1,2,--- ,2n — 1},

Since the immersion 2 : M — $"(1/v/2) x §°(1/+/2) is isometric,
from the (£, g, %, v, A)-structure defined on S™ x §™, we get the so-called
(fyg,u.v,w, A, gty v)-structure {2] given by
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(1.1) fofd = —bp +uu® + vpv° + wpw?,
su’ = —Av? 4+ pw?,
(1.2) fiv® = Au® + v,
foew® = —pu® — v

or equivalently,

uefg = /\va - ﬂwasve,f: = —')‘u'a - Vwa»wef: = MUq + Vg4,
(1.3) wot® =1 — A% — 4% 4 v® = —pv,uew0® = =My,
2 2
vt =1 — A% — v v, = Ay,
2
wew® = 1~ p? -2
where u4, v, and w, are i-forms associated with «®, v® and w*® re-

spectively given by u, = u gpa, v = vP g and w, = wbgya, and
foa = figca is skew-symmetric. Moreover, we obtain

(14) Vel = =20, Vo = we — Ao — Leu®, Vo = keew® — 10",

Finally, we introduce the followings.

REMARK [4]. If A% + p? 4+ v? = 1 on the hypersurface M, we see
that ¢ = 0, v = constant(# 0), v. = 0 and o = 0. And if the function
A vanishes on some open set, then we have v, = 0 and g = 0. Moreover
the 4-form u) never vanishes on an open set in Af, in fact, if 1-form wu;
1s zcro on an open set in A, then f. = 0, which contradict n > 1.

LEnMMA 1.1 {3]. Let M be a hypersurface satisfying ke f§f = ke f£
of S"(1/v/2) x §7(1//2). Then we have

Nyt =lorp’+p +auw =0

on M.



Global form of a complete hypersurface of S* x S 287

LeymMa 1.2 {3]. Under the same assumptions as those stated in
Lemma 1.1, Al is k-antiholomorphic if and only if \* + p? =1 holds
at every point of M.

THEOREM A [3]. Let M be a hypersurface of S*(1/v/2) x S*(1//2)
with (f, g, u,v,w, A, yt, v)-structure satisfying \? + P+ vt =1.IfM is
a minimal hypersurface of $"(1/v/2) x S™(1/+/2), then M is Sasakian
C-Einsteain manifold.

THEOREM B {3]. Let A be a k-antiholomorphic hypersurface of
S*(1/vV2) x S*(1/V2)n > 1) satisfying kEfS + fERS = 0. If M is
minimal (or the square of length of the second fundamental tensor of
M is not greater than 2(n — 1) at every point of M), then M as a
submaifold of codimension 3 of a Euclidean (2n + 2)-space, is an Inter-

section of complex cone with generator C and a (2n + 1)-dimensional
sphere S27+1(1).

THEOREM C [3]. If M is a k-invarinat hypersurface of S™(1/v/2) x
S™1/v/2)(n > 1) satisfying

L+ 5 =0,

then Af is totally geodesic Moreover, M is complete and A is §*7! x

S”.

THEOREM D [5]. Let M be a k-invariant hypersurface of $7(1/v/2)x
$*(1/4/2)(n > 1) satisfying

fe — fete =o.

Then Af is totally geodesic. Moreover, the hypersurface is complete
and M is S"71 x §".

2. Global form of a complete hypersurface

In this section, we consider a hyperswface Af of $7(1/V/2)x S(1//2)

such that

hife + ke =0, LfS+f10=0
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hold on AJ, or equivalently

(2.1) keefy = koe fe
and
(2.2) leefy = Lie f5.

Now, transvecting (2.1) with f* and using (1.1), we find,

e £b
lee( =05 + uau® + v,0° + wow® = Lo f& fos
from which. taking the skew-symmetric part,

(2.3) (leet® Yty — (lpeu® e + (leev® Yy
— (Lev®)ve + (leew®)wy — (Bhew®)we = 0.

If we transvect I ff with Feb, we get from (2.2
(2.4) It = Lputu® + Lpvcel + LpwSe®

because of {1.1)
From our assumption (2.1} and section 3 of [3], we get

(2.5) (1~ p? = vk = bw,, (1-a)w, =6k,
(2.6) keew® = —awy,

and

(2.7} (22 + 1) e + (4 a)ve + (v + apdue = 0.

Thus, according to Lemma 1.1, we may only consider the following two
cases i which

(2.8) N2+t =1,
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(2.9) w2+ + 2apr = 0.
In the first place. we consider the case in which A\? + 2 + % = 1, then
by Remark, we have a = 0, ¢ = 0, v = constanit(# 0) and v, = 0.
So (2.7) is turned out to be u, = —vk..

Substituting this into the second expression of (1.2) and remember-
ing the fact that v, = 0 and v # 0, we get

(2.10) we = Ake.

Therefore (1.4) with g =0 yvields v = 0 and hence {k® =0.
If we transvect I to (2.10), then

leeo® = 0.
Using these facts, the equation (2 4) gives I£ = 0, that is, the hyper-

surface 1s minimal.

According to Theoremn A, A is, in this case, a minimal Sasakian
C-Einstein manifold.

Secondly, we consider the case in which p? + /2 4+ 2apv = 0. Then
as was alrcady shown in section of [3], we have, in this case

v+aoap =0, i+ av =0,
which show that z? = 2. So (2.7) implies
(2.11) phe =0.
If we suppose that the hypersurface is not k-invariant, then g = 0 and
hence 1 =0
Thus the second equation of (1.4) reduces to

(2.12) leett® = (1 — Xy,

where we have used (2.5) with ¢ = » = 0.
Since v vanishes in this case, the third equation of (1.4) becomes

(2.13) lee¥® = —aw,
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with the aid of (2.6). :
Substituting (2.12) and (2.13) into (2.3), we find

{1 —8X)(weup — wpre) — a(wewwy — wpve) + (leew® )y — (Gew®)we = 0.

If we transvect this with wv® and take account of (1.3) with u =
v = 0, we obtain Aa = 0, where we have used (2.13). Since A can
not be vanish because of Remark, we see that the function « vanishes
‘identically, therefore by Lemma 12 A% = 1 and hence u, = 0, which
“is contradictory. Thus it follows from (2.11) that the hypersurface is
mvariant. So, as 1n the proof of Theorem C, M is totally geodesic.

TurornM 2.1. Let M be a hypersurface of $"(1/v/2) x §™(1//2)
(n > 1) satisfying

kefe + ke =0, Lf+ =0
Then M is totally geodesic or a minimal Sasakian C-Einstein manifold.
Combining Lemma 1.1, Theorem B and Theoiem C, we have
TUEOREM 2.2, Let Af be a complete hypersurface of $™(1/v/2) x
S™(1/v/2)(n > 1) satisfving
KEFE 4 SRS =0, ISf0 4 fEIE =0,

Then M is 5" x §"! or M as a submanifold of codimension 3 of
Euclidean (2n + 2)-sphere is an intersection of a complex cone with
generator ¢ and a (2n + 1)-dimensional sphjere $?"+1(1).

Acording to Lemma 1.1, Theorem B and Theorem D, we have
THEOREM 2.3. Let M he a complete hypersuiface of S™(1/v2) x
S*(1/v/2)(n > 1) satisfving
kefe + feke =0, LEfl+ £ =0.

Then A is 5" x 8", or M as a submanifold of codimension 3 of
a Euclidean {2n + 2)-space is an intersection of a complex cone with
generator C' and a (2n + 1)-dimensional sphere §2"t1(1), that is, a
Brieskorn manifold B?" 1,
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