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OPTIMAL CONTROL PROBLEM OF SOME
COST FUNCTIONS GOVERNED BY 

PARTIAL DIFFERENTIAL EQUATION

Gu-Dae Lee

1. Introduction
In this paper we deal with the_control problem for retarded func­

tional difFeiential equation:

(1.1)
d f°
方7*(" + Ai x(t — h) + / + s)ds
dt J-h

+ Bou(t),
(1.2) x(0) =<7°, 2(s) = ”(s), s€[—&,0)

in Hilbert space H. We investigate the optimization of control func­
tions appearing as the cost function with particular objective.

We solve the optimization problem by introducing the structual op­
erator F and the transposed dual system.

In section 2, we consider some the regurality and a representation 
formular functional differential equations in Hilbert spaces. We e융tab­
ash a form of a mild solution which is described by the integral equation, 
in terms of fundamental solution using structural operator. In section 
3, we shall give a cost function, which is called the feedback control law 
for regulator problem and consider results on the existence and unique­
ness of optimal control on bounded admissable set. After considering 
the relation between the operator Ai and the structual operator F, 
we will give the condition so called a weak backward uniqueness prop­
erty. Maximal principle and bang-bang principle for technologically 
impoitant costs are also given.
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2. Functional differential equation with time delay
Let V and H be two Hilbert spaces The norm on lz(resp. H) will be 

denoted by || -1| ( resp. | • |) and the corresponding scalar products will 
be denoted by ((•, ・))(resp. (・,•)). Assume V C H, the injection of V 
into H is continuous and V is dense in H. H will be identified with its 
dual space. If V* denotes the dual space, H may be identified with a 
subspace of V* and may write V C H C V*. Since V is dense in H and 
H is dense in V* and the corresponding injections are continuous. If 
an operator Ao is bounded linear operator from V to V* and generates 
an analytic semigroup, then it is easily seen that

rT
(2.1) H = {.T e V* : / ||&广侦|0 <。。},

Jo
for the time T > 0 where |j - |j* is the norm of the element of V*. The 
realization of Aq in H which is the restriction of Aq to

D(A0) = {n e V : Aw e H}

is also denoted by Aq. Therefore, in terms of the intermediate theory 
we can see that

(2.2) (U**)¥，2=H

and hence we can also replace the intermediate space F in the paper 
[2] with the space H. Hence, from now on we derive the same results of 
G, Blasio, K. Kunisch and A. Sinestrari [2]. Let be a bounded 
sesquilinear form defined in V x V satisfying Garding^ inequality

Re a(u.v) > 지I삐|2 — cilc|2, c0 > 0, ci > 0.

Let Aq be the operator associated with a sesquilinear form

f.40u, v) = —v), iz, v EV.

Then A。generates an analytic semigroup in both H and V* and so 
the equation (1.1) and (2.2) may be considered as an equation in both 
H and F*:

Let the operators A\ and Aq be a bounded linear operators from V 
to V*. The function o(-) is assume to be a real valued Holder continous 
in [~/i, 0] and the controller operator B° is a bounded linear operator 
from some Banach space U to H, Under these conditions, from (2.2) 
Theorem 3.3 of [2] we can 시：)tain following result.
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w（財）=<

Proposition 2.1.如 g = (g气")£ Z = H 乂 Z2(-7i,O; V) and 
it G L2(0,T; U). Then for each T > 0, a solution x of the equation 
(1-1) and (1-2) belongs to

乙2(0, T； V) n "L2(o, T. u*) c c(R 幻；H).

According to S. Nakagiri [7], we define the fundamental solution 
W(t) for (1.1) and (1.2) by

W;0,(gO,0)), t > 0
0 t < 0

for g° € H. Since we assume that a(-) is Holder continuous the funda­
mental solution exists as seen in [11]. It is known that W(t) is strongly 
cont、i교uous and A\)W(t) and dW(t}/dt aie strongly continuous except 
at i = ?? = 0, 1, 2,....

For each t > 0, we introduce the structual operator F«) from H x 
L2(0. T; V) to L2(0, T; V*) defined by

砲=(",冋]1),
[Fg]° =此

成州=F。= &"(一力一s) + [ g(t)A2^1(t - s)dT
J-h

for g = (<7°,(71) E H ~x. L2(0,T; V). The solution x(t) = x(t; g, u) of
(1.1) and (1.2) is represented by ，

= W(t)gQ + j S(s)g】(s)ds + / W{t — s)3〔)u(s)ds 
J-h Jo

where

히/(s) = W(t 一 s — h)Ai + i — s + r)a(T)A2dT 
J-h

for t > 0.
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Proposition 2.1. If Ai : V ——> V* is an isoraorphism9 then F : 
Z ——> Z* is an isomorphism.

Proof. For f 6 Z* the element g E Z satisfying gQ = /° and

g^-h -s)+ [ a(T)A「以以(丁 一 s)石=4了尸(s)
J-h

is the unique solution of Fg = /. The integral equation mentioned 
above is of Voltei'ia type, and so it can be solved by successive approx­
imation.

THEOREM 2.1. Let A\ be an isomorphism. Then the solution x(t; 0) 
is identically zero on a positive mesure containing zero in [—/z, T] for 
T > h if and only if gQ —0 and g1 = 0.

Proof. With the change of variable and Fubini’s theorem we obtain

[ S(소)时 (s)ds
J-h

r°
=/ W(t — s -/)d”(s)ds 

J-h
+ [ ( [ W(t 一 S + T)tZ(T)A2c/T)<71(5)d«S 

J — h J—h 
代

=/ *(£ + $){/如涧一")($)<7'(—龙 一 s)
J-h

+ [ A?(丁)#(丁 一 s)a(丁)石}ds 
J-h

=/° [卩(t + s)UW](s)么. 

J-h

Thus the mild solution x(t; 0) is represented by

r°
E) = + / W(t + s)[F”(s)d&

J-h

Thus, we have that t(0) = m(0)g° = " = 0 in H. Because that 
Ai is an isomorphism and, we obtain that F\ is isomorphism from 
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Proposition 2.1. Therefore i'(<;(7,0) = 0 if and only if = 0 and 
g1 三 0.

Let I = [0, T], T > 0 be a finite interval. We introduce the trans­
posed system which is exactly same as in S. Nakagiri[8]. Let 茹 6 X、 

</* E H). The retarded transposed system in H is defined by

(2.3)
—2 + A^yit) + A*y(t + /?) + ] a(s)一4冷0 - s)ds

+ = 0 ae t G z,
(2.4)

y(T) =g(s) = 0 a.e. 6 6 (T,T + 川.

Let denote the adjoint of TV(i). Then as proved in S. Nakagiri 
[8], the mild solution of (2.3) and (2.4) is defined as follows:

火)=W^T - t)(亦)+「TF*(C -小茂)始

for f G Z in the weak sence. The tranposed sjrstem is used to present 
a concrete form of the optimality conditions for control optimization 
problems.

COROLLARY 2.1. The solution y(t) is identically zero on a positive 
mestue in [T, T + h] containg T if and only if 茹 =0 and q； = 0..

If the equation (2,3) and (2.4) satisfies the result in Corollary 2.1, 
the equation (2.3) and (2,4) is said to have a weak ba ch ward uniqueness 
property.

3. Optimality for regular cost function
In this section, the optimal control problem is to find a control u 

which minimizes the cost function

J(u) = (G.r(T),a'(T))H+ [ ((Z)(t)T(t),t(/))h + (Q(t)"U),叩))勿出 

Jo

where .r( ) is a solution of (1.1) and (1.2), G £ B(H) is self adjoint and 
nonnegative. and D G £?oo(0,T; H.H) which is a set of all essentially 
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bounded operators on (0, T) and Q C ^(^(0, T; U. U) are self adjoint 
and ninnegative, with Q(t) > m for some m > 0, for almost all t. 
Let us assume that there exists no admissible control which satisfies 
G,r(T;(7,zz)丰 0.

THEOREM 3.1. Let Uad be closed convex in L2(0,T; U). Then there 
exists a unique element u G Uad such that

(3.1) J(u) = inf J(v).

Moreover, it is holds the following inequality:

[(一跖/(s) + Qu(s),u(s) - Z£(s))ds 2 0 
Jo

where y(t) is a solution of (2.3) and (2.4) for initial condition that 
y(T) = Gtu(T) and y(s) = 0 for s £ (T,T + 이 substituting gj") by 

That is, y(t) satisfies the following transposed system:

(3.2)
'쓰흐 + AH/。) + A*/(Z + 4) + j a(s)A2y(t - s)ds

+ — = 0 a.e. / G Z,
(3.3)

y(T) = Gxu(T), g(s) = 0 a.e. sG(T,T + 시

in the weak sense.

Proof. Let w(Z) = 쟈(t; 们 0). Then it holds that

J(V)= 7T(V, V)

where

#(//) =(Ga-1t(T)9xv(T))H

+ [ (0心)為(匕),：上。))h + (Q(却3),叩))。)出 

Jo
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The form 7r(tz, v) is a contimious bilinear form in Z2(0,T; U) and from 
assumption of the positive definite of the operator Q we have

지m>)2c||이F y e l2(0,T,U).

Therefore in virtue of Theorem 1.1 of Chapter 1 in [6] there exists a 
unique u G L2(0,T; U) such that (3.1). If u is an optimal control (cf. 
Theorem 1.3. Chapter 1 in [6]), then

(3.4) J (u)(v — u) > 0 U e Uad.

where J((u)v means tlir Frechet derivative of J at u, applied to v. It 
is easily seen that

서涂)3 - u) = (—们 t：。))

=f (f) —- it(i)

Since

J'(u)3 一 u) = 2(G叫(幻®，(7) - xu(T))

+ 2 / (D(t)Ta(t),Tr(t) -xu(t)) 
Jo

+ 2(Q(t)u(t),a(t) —

(3.4) is equivalent to that

C{BIW*(T 一 s)(G.tu(T),心)一讽s))ds+
Jo
J (Bq j W*(t - s)」D(f)Ea(Z)dt + Qu(s),u(s) — u(s))ds

> 0.

Hence

y(6)= iy*(T 一 s)Gj(T) +「W*(t - s)D(t)xv(t)dt
J 3

is solves (3.2) and (3.3).
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Corollary 3.1 (Maximal principle). Let Uad be bounded and 
Q = 0. If u be an optimal solution for J then

끋沪 (叫狷由刼 (•)) = (u,A 가码 (.)g(.))
vEUad

where g(s) = —z/(s) and g(s) is given by in 꼬Aeorem 3丄

Proof. We note that if Ua(i is bounded then the set of elements 
u G Ua(i such that (3.1) is a nonempty, closed and convex set in Uad^ 
Thus from Theorem 3.1 the result is obtained.

Theorem 3.2 (Bang-Bang Principle). Bq be one to one map- 
ping. Then the optimal control is a bang-bang control, i.e, u(t) 
satisfies u(t) G dU(l(t for almost all t where dUad denotes the boundary

Proof. On account of Corollary 3.1 it is enough to show that Bjg(t) 
尹 0 for almost all t. If B^qQ) = 0 on a set e of positive measure 
cont a i ng T, then q(t) = 0 for each t E e. By Corollary 2.1, we have 
Gxu(T) = 0, which is a contraction.

From now on, we consider the case where Uad = L2(0,T; U). Let 
^u(t) = 们 0) + J* W(t — s)Bg(s)ds be solution of (1.1) and (1.2). 
Define T e B(H, i2(0, T; H)) and Tt e B(Z2(0, T; H), H) by

(70)0)=「W(七一 s)扒司

Jo
= [ W(T — 

Jo
Then we can write the cost function as

(3.5)
J(u) =(Gh0H,O) + TrBoul (x(T; g, 0) + TrBou))H

+ VW 이 + TBou),x(-;g.O) + TB0u)l2(0^；h)

+ (0")乙호 (0,7； 日).

The adjoint oprators T* and are given by

(7W)(t) = 机司ds,

(T추。)(t) =
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THEOREM 3.3. Let Uad = 乙흐(0,7;U) Then there exists a unique 
control u such that (4,1) and

for almost all i, where A = Q + BqT^DTBq + BqT^GT^Bq and where 
y(t) is a solution of (2.3) and (2.4) initial condition that y(T)= 
Gt(T) and y(s) = 0 for s € (T,T + h] substituting qj(Z) by Dx(t).

Proof. The optimal control for J is unique solution of

(3.6) J (u)u = 0.

From (3.5) we have

丿'(心，=2((沧(幻们0) +為&们攵「瓦般))

+ 2(Z>(x(-,g,0) + TBg、),TB°v)
+ 2(0")

=2((Q + B0DTB： + BT^GTtBq)u,v)
+ 2(瓦/n( ・; g, 0) + B&T추、Ge(꼬; 9.0), v).

Hence (3.6) is equivalent to that

((A + B^Dx^t-g、0) + B^Gt(T;们 0))u, v) = 0

since A-1 E 13^(0. T; U) (see Appendix of [3]). Hence from The 
definitions of T and Tt it follows that

y(t) = W*(T — t)Gz(T) + W*(s - t)Dz(t)ds.

Therefore, the proof is complete.
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