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OPTIMAL CONTROL PROBLEM OF SOME
COST FUNCTIONS GOVERNED BY
PARTIAL DIFFERENTIAL EQUATION

GU-DAE LEE

1. Introduction

In this paper we deal with the control problem for retarded func-
tional differential equation:

(1.1)

0
-gt—:r(t) =Apa{t) + Ayz{t — h) +f a(s)Arx(t 4 s)ds

—-I
+ B{]u(t))
(1.2) 2(0) =¢", a(s)=g¢'(s), s€[~h,0)

in Hilbert space H. We investigate the optimization of control func-
tions appearing as the cost function with particular objective.

We solve the optimization problem by introducing the structual op-
erator F' and the transposed dual system.

In section 2, we consider some the regurality and a representation
formular functional differential equations in Hilbert spaces. We estab-
lish a form of a mild solution which is described by the integral equation
in terms of fundamental solution using structural operator. In section
3, we shall give a cost function, which is called the feedback control law
for regulator problem and consider results on the existence and unique-
ness of optimal control on bounded admissable set. After considering
the relation between the operator A4; and the structual operator F,
we will give the condition so called a weak backward uniqueness prop-
erty. Aaximal principle and bang-bang principle for technologically
mmportant costs are also given.
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2. Functional differential equation with time delay

Let V and H be two Hilbert spaces The norm on V(resp. H} will be
denoted by || || ( resp. |-|) and the corresponding scalar products will
be denoted by ((-,-)){resp. (-,-)). Assume V C H, the injection of V
into A is continuous and V is dense in H. H will be identified with its
dual space. If V* denotes the dual space, H may be identified with a
subspace of V* and may write V C H C V*. Since V is dense in H and
H is dense in V* and the corresponding injections are continuous. If
an operator Ay is bounded linear operator from V to V* and generates
an analytic semigroup, then it is easily seen that

T
(2.1) H={zeV* :/ l4oe! 2|2 dt < oo},
0

for the time T > 0 where || - ||« is the norm of the element of V*. The
realization of Ay in H which is the restriction of 44 to

D(Ag)={veV:Aue H}

is also denoted by 4y. Therefore. in terms of the intermediate theory
we can see that

(2.2 (V,V*),,=H

and hence we can also replace the intermediate space F' in the paper
[2} with the space H. Hence, from now on we derive the same results of
G. Blasio, K. Kunisch and A. Sinestrari {2]. Let o{u,v) be a bounded
sesquilinear form defined in V' x V satisfying Garding’s inequality

Re a(x,v) 2 collu|l® —erle*, ¢ >0, ¢ >0.
Let Ao be the operator associated with a sesquilinear form
(4ou,v) = —a(u,v), u, veV.

Then Ay generates an analytic semigroup in both H and V* and so
the equation {1.1) and (2.2) may be considered as an equation in both
H and V*:

Let the operators 4, and A, be a bounded linear operators from V
to ¥*. The function «(-) is assume to be a real valued Héolder continous
in [—h, 0] and the controller operator By is a bounded linear operator
from some Banach space U to H. Under these conditions, from (2.2)
Theorem 3.3 of {2] we can obtain following result.
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PROPOSITION 2.1. Let ¢ = (¢°,¢*) € Z = H x L*(~h,0;V) and
u € L*(0,T;U). Then for each T > 0, a solution z of the equation
(1.1) and (1.2) belongs to

L0, T; VYN Wh30,T; VY C C([0.T}; H).

Accordmg to S. Nakagiri [7], we define the fundamental solution
W(t) for (1.1) and (1.2) by

. 2(4:0,(¢%,0)), t>0

for ¢" € H. Since we assume that a(-) is Hélder continuous the funda-
mental solution exists as seen in [11]. It is known that W () is strongly
continuous and 4,W (¢} and dW{(t)/dt aie strongly continuous except
att=nr, n=0,1 2, ...

For each t > 0, we introduce the structual operator F(-} from H x

LY0,T;V) to H x L*(0,T; V*) defined by
= ([Fq]",{Fg]"),
(Fgl® = ¢°,

(Fol' = Fig' = Aig' (=1 —.s)-}-/ a(T)Aa2g (7 — s)dr
—h

for ¢ = (¢°,¢') € H x L*(0,T; V). The solutxon z(t) = z(¢; g,u) of

(1.1) and (1.2} is represented by

x(t) = W(t)g° +/ Ui(s)g' (s)ds +/ W(t — s)Bou(s)ds

where
3

Us) =W(t —s—h)4, + j W(t - s + m)a(r)Asdr

—-b

for t > 0.
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ProposiTioN 2.1. If Ay : V — V™ is an isomorphism, then F' :
Z — Z* is an 1somorphism.

Proof. For f € Z* the element g € Z satisfying g° = f* and
gl(—h—s)+] a(T)AT Aoy (7~ s)dr = AT f1(s)
—h

is the unique solution of Fig = f. The integral equation mentioned
above is of Volterra type, and so it can be solved by successive approx-
imation.

THEOREM 2.1. Let A; be an isomorphism. Then the solution z(t; g, 0)
is identically zero on a positive mesure contamning zero in {—h,T) for
T > hifand only if ¢° =0 and ¢! = 0.

Proof. With the change of variable and Fubini’s theorem we obtain

0
/ Uids)g*(s)ds
0

= W(t ~s — h)Aig*(s)ds
—~h

0 s
+ / (] Wt — s+ r)a(r)Azdr)g*(s)ds
—h J=h

4]
- / V(4 ) (A xmnan(8)g (= o)
8

+ Aqo(T)g (7 = s)a(T)dT}ds

—h

0
= / W(t+ s)[Fig')(s)ds.

~h

Thus the mild solution z(¢;¢,0) is represented by

0
z(t) = W()e® + f W(t+ s)[Fyg]'(s)ds
—h

Thus, we have that 2(0) = W(0)¢® = ¢° = 0 in H. Because that
A1 1s an isomorphism and, we obtain that Fy is isomorphism from
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Proposition 2.1. Therefore 2(¢;¢,0) = 0 if and only if ¢° = 0 and
g' = 0.
Let I = [0,T], T > 0 be a finite interval. We introduce the trans-

posed system which is exactly same as in S. Nakagiri[8]. Let ¢ € X,
gt € LY(I; H). The retarded transposed system in H is defined by

(2.3)
[}

+ Agy(t) + ATy(t + h) +f a(s)Aay(t — s)ds
—-h

dy(t)
dt

+4¢i(t)=0 ae tel,

(2.4)
y(Ty=y¢qs, y(8)=0 ae sec(T,T+40).

Let 1V *{t) denote the adjoint of W{t). Then as proved in S. Nakagiri
[8], tlie mild solution of (2.3) and (2.4) is defined as follows:

T
y(£) = V(T 1)(0) + / (€ — )t (€)de,

for + € I in the weak sence. The tranposed system is used to present
! 3

a concrete form of the optimality conditions for control optimization
problems.

COROLLARY 2.1. The solution y(t) is identically zero on a positive
mesure in [T, T + h] containg T if and only if q5 =0 and ¢f = 0..

If the equation (2,3) and {2.4) satisfies the result in Corollary 2.1,

the equation (2.3) and (2.4) is said to have a weak bachward uniqueness
property.

3. Optimality for regular cost function

In this section, the optimal control problem is to find a control u
which minimizes the cost function

T
J(u) = (Ga(T), 2{T))w + f (D (1), 2(8)) 1 + (QO)u(t), U(t)) )t
]

where r( ) is a solution of (1.1) and (1.2), G € B(H) is self adjoint and
nonnegative, and D € B (0, T; H, H) which is a set of all essentially
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bounded operators on {(0,7) and @ € B(0,7;U,U) are self adjoint
and ninnegative, with Q(t) > m for some m > 0, for almost all £.
Let us assume that there exists no admissible control which satisfies

Ge{T;g,u) # 0.

THEOREM 3.1. Let U,q be closed convex in L*(0,T;U). Then there
exists a unique element u € Uyy such that

(3.1) J(u):e-ielll};g J{v).

Moreover, it is holds the following inequality:

T
/0 (Bgy(s) + Qu(s),v(s) — u{s))ds >0

where y(t) is a solution of (2.3) and (2.4} for initial condition that
y(T) = Gz, (T) and y(s) = 0 for s € (T,T + h| substituting ¢;(t) by
D(t)a,(t). That is, y(t) satisfies the following transposed system:

(3.2)
Ty(t 0
”;’Ig ) +.~1;';y(1)+.4’;y(t+h)+/ 5)Agy(t — s)ds
—=h
+ .D(t)(.’c,,(t) - .I,‘,,(t)) =0 ae t € Ia
(3.3)

Y T) = Gau(T), y(s)=0 ae se(T,T+1]

in the weak sense.

Proof. Let 2(t) = x(¢;9,0). Then it holds that
J(v) = 7(v,v)
where
w(u.v) =(Gru(T), 2(T))1

T
+/; (D(t)zalt), 2o(t))u +(Q()u(t), u{t))y )dt
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The form #{u,v) is a continuous bilinear form in L*(0,T; U) and from
assumption of the positive definite of the operator Q we have

m{v,v) > cljvil? » € L*(0,T,U).

Therefore in virtue of Theorem 1.1 of Chapter 1 in [6] there exists a
unique u € L*(0,7;U7) such that (3.1). If » is an optimal control (cf.
Theorem 1.3. Chapter 1 in [6}), then

(3.4) J’(u)(v —u)>0 ue U,

where J'(u)v means thr Fréchet derivative of J at u, applied to v. It
is easily scen that

T (B —u) = (v = u,7,(2)
= ‘Tt'(t) - (t)

Since

(u)(v — ) =2Gzy(T).2,(T) — 2,(T))

+2 / (D()a(t), ao(t) — 2a(8))
F2AQ (D), v{t) — u(t))dt,

(3.4) 1s equivalent to that
T
[ BT = (GaalT), o) = ()it
- Jo

T P

/ (Bg/ Wt = s)D(t)a, ()dt + Qu(s),v(s) — u(s))ds
t] 8

> 0.

Hence

T
Y(s) =WHT - 5)Gx (T) + / W*{t — s)D(t)z,(t)dt

158 solves (3.2) and (3.3).
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COROLLARY 3.1 (MAXIMAL PRINCIPLE). Let U,q4 be bounded and
(2 = 0. If u be an optimal solution for J then

1max (v, Ay Big()) = (u, Ag' By (-)a(-)
where ¢{s) = —y(s) and y(s) is given by in Theorem 3.1.

Proof. We note that if U,y is bounded then the set of elements
u € Ugq such that (3.1) is a nonempty, closed and convex set in Uggq.
Thus from Theorem 3.1 the result is obtained.

THEOREM 3.2 (BANG-BANG PRINCIPLE). Bj be one to one map-
ping. Then the optimal control u(t) is a bang-bang control, i.e, u(t)
satisfics u{t) € QU,q for almost all t where OU,4 denotes the boundary
of Ugq.

Proof. On account of Corollary 3.1 it is enough to show that Bgg¢(?)
# 0 for almost all {. If Bjq¢(t) = 0 on a set e of positive measure
containg T, then ¢(t) = 0 for each ¢ € e. By Corollary 2.1, we have
Ga.(T) = 0, which is a contraction.

From now on, we consider the case where Uy,g = L%(0,T;U). Let
xo(t) = a(t;9,0) + j;; W(t — s)Byu{s)ds be solution of (1.1) and (1.2).
Define T € B(H,L*(0,T; H)) and Tr € B(L*(0,T; H), H) by

Toxe) = [ wie- sy,

T
Troé = / W(T — s)¢(s)ds.
0

Then we can write the cost function as
(3.3)
J(u) =(G(2(T,¢,0) + TrBou), (2(T; ¢,0) + TrByu))n

+ (D(x(:19.0) + TByu), 2(+; 4,0) + TBou) 20,7:m)
+ (Qu,u}pz0, 70
The adjoint oprators T* and T3 are given by

T

(T"8)(¢) = / W (s — £)8(s)ds,
f

(Tro)(t) = W (T = t)e.
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THEOREM 3.3. Let U,y = L*(0,T;U) Then there exists a unique
contro! u such that (4.1) and

u(t) = — A1 By(t)

for almost all t, where A = Q+ B§T*DT By + ByT1GT1By and where
¥(t) is a solution of (2.3} and (2.4) for initial condition that y{T) =
Gx(T) and y(s) =0 for s € (T, T + h} substituting ¢;(t) by Dz(t).

Proof. The optimal control for JJ is unique solution of
(3.6) J (u)o =0.

From (3.5) we have

J'(u)ye =2G(2(T; 9,0) + TrBou), TrBov))
+ 2(D(z(-,¢,0) + TBou), T Byv)
+ 2(Qu,v)
=2((Q + ByT"DTB; + BT;GTrBg)u,v)
+2(BgT*Dx{+;4,0) + ByT1Ga(T; g,0),v).

Hence (3.6) is cquivalent to that
(A + BiT*Da(t; 9,0) + ByT3Ga(T; 9, 0))u,0) = 0
since A7 € Boo{(0,T; H,U) (sce Appendix of [3]). Hence from The

definitions of T and T it follows that

T
y(#) =WHNT - )G2(T) + / (s — t)Da(t)ds.
t
Therefore, the proof is comiplete.
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