$\alpha(\theta, s)$ -CONTINUOUS FUNCTIONS

E. HATIR AND G.I. CHAE

1. Introduction

In this paper, spaces will always mean topological spaces and f: $X \rightarrow Y$ denotes a function from a space X into a space Y. For $A \subset X$, the closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively. A is said to be α -open [8] (resp. preopen [7], semiopen [5] and regular open) if $A \subset IntClInt(A)$ (resp. if $A \subset IntCl(A)$, if $A \subset ClInt(A)$, and if A = IntCl(A)). The complement of an α -open (resp. a preopen, a semiopen and a regular open) set is called α -closed (resp. preclosed, semiclosed and regular closed). The family of α -open (resp. open, preopen, semiopen and regular closed) sets of X will be denoted by $\alpha O(X)$ (resp. $\tau(X)$, PO(X), SO(X) and RC(X)), and the family of α -open (resp. open, preopen, preopen, semiopen and regular closed) sets of X containing x, by $\alpha O(X,x)$ (resp. $\tau(X,x)$, PO(X,x), SO(X,x) and RC(X,x)).

The set $\alpha \operatorname{Cl}(A) = \{x \in X : A \cap U \neq \emptyset, \text{ for each } U \in \alpha \operatorname{O}(X, x)\}$ is called the α -closure of A, and $p \in X$ is said to be in the θ -semiclosure of A (simply, $p \in \theta \operatorname{sCl}(A)$) if $\operatorname{Cl}(V) \cap A \neq \emptyset$, for each $V \in \operatorname{SO}(X, x)$. It is shown that $x \in \theta \operatorname{sCl}(A)$ iff $A \cap R \neq \emptyset$ for each $R \in \operatorname{RC}(X)$. A filterbase ∇ is said to s-accumulate to x [4] (simply, $x \in \theta$ -ad, ∇) iff $x \in \theta \operatorname{sCl}(F)$, for each $F \in \nabla$ iff $F \cap R \neq \emptyset$, for each $R \in \operatorname{RC}(X)$ and $F \in$ ∇ . ∇ is said to s-converge to x [4] iff there is an $F \in \nabla$ such that $F \subset$ R for each $R \in \operatorname{RC}(X)$. ∇ is said to α -accumulate to x [4] iff $x \in \operatorname{Cl}(F)$ for each $F \in \nabla$ [4] iff $V \cap F \neq \emptyset$ for each $F \in \nabla$ and $V \in \alpha O(X)$.

A function $f: X \to Y$ is said to be (θ, s) -continuous [4] (resp. weakly α -continuous [9]) if for each $x \in X$ and each $V \in SO(Y, f(x))$ (resp. $V \in \tau(Y, f(x))$, there is a $U \in \tau(X, x)$ (resp. $\alpha O(X, x)$) such that $f(U) \subset Cl(V)$. $f: X \to Y$ is said to be α -continuous [6] (resp. semi-continuous [5]) if for each $V \in \tau(Y)$, $f^{-1}(V) \in \alpha O(X)$ (resp. SO(X)).

Received October 31,1996

This paper gives a new class of function called an $\alpha(\theta, s)$ -continuous function which is a generalization of (θ, s) -continuous function, and its properties are then related.

II. $\alpha(\theta, s)$ -continuous functions

DEFINITION 1. A function $f: X \to Y$ is said to be $\alpha(\theta, s)$ -continuous if for each $x \in X$ and each $V \in SO(Y, f(x))$, there exists a $U \in \alpha O(X, x)$ such that $f(U) \subset Cl(V)$. The graph G_f of $f: X \to Y$, given by $G_f(x)$ $= \{(x, f(x)) \mid \text{for each } x \in X\}$, is said to be $\alpha(\theta, s)$ -closed with respect to X×Y if for each $(x, y) \notin G_f$, there exists a $U \in \alpha O(X, x)$ and a $V \in$ SO(Y, y) such that $f(U) \cap Cl(V) = \emptyset$.

THEOREM 2. For $f: X \to Y$, the following are equivalent :

- (1) f is $\alpha(\theta, s)$ -continuous.
- (2) $f: (X, \alpha O(X)) \to (Y, \tau(Y))$ is continuous.
- (3) $f(\alpha \cdot ad\nabla) \subset \theta \cdot ad_s f(\nabla)$ for each filterbase ∇ on X.
- (4) $f(\alpha Cl(A)) \subset f(\theta Cl_s(A))$ for each $A \subset X$.
- (5) $\alpha Cl(f^{-1}(B)) \subset f^{-1}(\theta Cl_s(B))$ for each $B \subset Y$.
- (6) $f^{-1}(B)$ is α -closed in X for each θ -semiclosed subset B of Y.
- (7) For each $R \in RC(Y,f(x))$, there is a $U \in \alpha O(X,x)$ such that $f(U) \subset R$.

Proof. The proof is straightforward and is thus ommitted.

LEMMA 3. [1] $\alpha Cl(A) = A \cup ClInt(A)$ for any set A of a space X.

THEOREM 4. For $f : X \to Y$, the following are equivalent:

- (1) f is $\alpha(\theta, s)$ -continuous.
- (2) $f(CHntCl(A)) \subset \theta Cl_s(f(A))$ for each $A \subset X$.
- (3) $ClIntCl(f^{-1}(B)) \subset f^{-1}(\theta Cl_s(B))$ for each $B \subset Y$.

Proof. It follows immediately from Theorem 2 and Lemma 3.

It follows from the above definition that every (θ, s) -continuous function is $\alpha(\theta, s)$ -continuous and every $\alpha(\theta, s)$ -continuous function is weakly α -continuous, but the converses may not be true, in general, as shown by Example 5 and 6. EXAMPLE 5. Let $\tau_1 = \{X, \emptyset, \{c\}\}$ and $\tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{a,b\}\}$ be topologies on $X = \{a,b,c\}$. Define $f: (X,\tau_1) \to (X,\tau_2)$ by the identity. Then f is $\alpha(\theta, s)$ -continuous (thus α -continuous and semi-continuous), but not (θ, s) -continuous.

EXAMPLE 6. Let $X = \{a,b,c\}, \tau(X) = \{X, \emptyset, \{c\}\} \text{ and } Y = \{a,b,c,d\}$ and $\tau(Y) = \{Y, \emptyset, \{a\}, \{d\}, \{a,d\}, \{b,d\}, \{a,b,d\}\}$. Define $f: X \to Y$ by f(a) = b, f(b) = c, and f(c) = d. Then f is weakly α -continuous and semi-continuous, but not $\alpha(\theta, s)$ -continuous.

From the above examples, $\alpha(\theta, s)$ -continuous functions are independent of α -continuous and semi-continuous. A function $f: X \to Y$ is defined to be θ -irresollute if for each $x \in X$ and $V \in SO(Y, f(x))$, there is a $U \in SO(X, x)$ such that $f(Cl(U)) \subset Cl(V)$.

THEOREM 7. Let $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ be functions.

- (1) If f is $\alpha(\theta, s)$ -continuous and g is θ -irresolute, then their composition $g \circ f$ is $\alpha(\theta, s)$ -continuous.
- (2) If f is α-continuous and g is (θ, s)-continuous, then their composition gof is α(θ, s)-continuous.

THEOREM 8. Let $f : X \to Y$ is $\alpha(\theta, s)$ -continuous and $A \subset X$. If either $A \in PO(X)$ or $A \in SO(X)$, then the restriction $f|_A : A \to Y$ is $\alpha(\theta, s)$ -continuous.

THEOREM 9. Let $G_f : X \to X \times Y$ be the graph function of $f : X \to Y$. If G_f is $\alpha(\theta, s)$ -continuous, then f is $\alpha(\theta, s)$ -continuous.

Proof. Let $x \in X$ and $V \in SO(X \times Y, f(x))$. Then $X \times V \in SO(X \times Y, G_f(x))$. Since G_f is $\alpha(\theta, s)$ -continuous, there exists a $U \in \alpha O(X, x)$ such that $G_f(U) \subset Cl(X \times V) = X \times Cl(V)$. Thus $f(U) \subset Cl(V)$.

A space X is (θ, s) -Hausdorff [7] if for any $x, y \in X$, $x \neq y$, there exist $U, V \in SO(X)$ such that $x \in U$, $y \in V$ and $Cl(U) \cap Cl(V) = \emptyset$, and α -Hausdorff [1] if for any $x, y \in X$, $x \neq y$, there exist $U, V \in \alpha O(X)$ such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

THEOREM 10. If $f : X \rightarrow Y$ is an $\alpha(\theta, s)$ -continuous injection and Y is (θ, s) -Hausdorff, then X is α -Hausdorff.

Proof. Let x_1, x_2 be any distinct points of X. Then $f(x_1) \neq f(x_2)$ and there exist $V_1, V_2 \in SO(Y)$ such that $f(x_1) \in V_1, f(x_2) \in V_2$ and

 $\operatorname{Cl}(V_1) \cap \operatorname{Cl}(V_2) = \emptyset$. Since f is $\alpha(\theta, s)$ -continuous, there exist open sets $U_1 \in \alpha O(X, x_1, U_2 \in \alpha O(X, x_2)$ such that $f(U_i) \subset \operatorname{Cl}(U_i)$ for i = 1, 2. Therefore, $U_1 \cap U_2 = \emptyset$. Thus X is α -Hausdorff.

THEOREM 11. If $f : X \to Y$ is an $\alpha(\theta, s)$ -continuous and Y is (θ, s) -Hausdorff, then the graph G_f of $f : X \to Y$ is α -closed in $X \times Y$.

Proof. Let $(x,y) \notin G_f$. Then $y \neq f(x)$. Since Y is (θ, s) -Hausdorff, there exist disjoint W,V \in SO(Y) such that $f(x) \in W$, $y \in V$ and $Cl(W) \cap Cl(V) = \emptyset$. Since f is $\alpha(\theta, s)$ -continuous, there exists a U \in $\alpha O(X,x)$ such that $f(U) \subset Cl(W)$ Therefore, $f(U) \cap Cl(V) = \emptyset$. Thus G_f is $\alpha(\theta, s)$ -closed

A space X is called S-closed [11] if every semiopen cover of X has a finite proximate subcover, and α -compact [3] if every α -open cover of X has a finite subcover. A subset A of X is called S-closed relative to X [10] if for every cover $\{V_{\alpha} \mid V_{\alpha} \in SO(X), \alpha \in \nabla\}$ of A, there exists a finite subset ∇_{\circ} of ∇ such that $A \subset \bigcup \{Cl(V_{\alpha}) \mid \alpha \in \nabla\}$, and α -compact relative to X [3] if for every cover $\{V_{\alpha} \mid V_{\alpha} \in \alpha O(X), \alpha \in \nabla\}$ of A, there exists a finite subset ∇_{\circ} of ∇ such that $A \subset \bigcup \{V_{\alpha} \mid \alpha \in \nabla\}$, and ∇ of A, there exists a finite subset ∇_{\circ} of ∇ such that $A \subset \bigcup \{V_{\alpha} \mid \alpha \in \nabla\}$

THEOREM 12. If $f : X \to Y$ is an $\alpha(\theta, s)$ -continuous and A is α compact relative to X, then f(A) is S-closed relative to Y.

Proof. Let A be α -compact relative to X and and ∇ be a semiopen cover of f(A). For each $a \in A$, there is a semiopen set $V_a \in \nabla$ such that $f(a) \in V_a$. Since f is $\alpha(\theta, s)$ -continuous, there exists a $U_a \in \alpha O(X, a)$ such that $f(U_a) \subset Cl(V_a)$. So the collection $\{U_a \mid f(U_a) \subset Cl(V_a, a \in A\}$ forms an α -open cover of A. Since A is α -compact, there is a finite subcollection $\{U_{a_1}, U_{a_2}, \dots, U_{a_n}\}$ such that $A \subset \bigcup_i^n U_{a_i}$. Thus we have $f(A) \subset f(\bigcup_i^n U_{a_i}) = \bigcup_i^n f(U_{a_i}) \subset \bigcup_i^n Cl(V_{a_i})$. Hence ∇ has a finite subcollection $\{Cl(V_{a_i}) \mid i = 1, 2, ..., n\}$ which covers f(A). Thus f(A) is S-closed relative to Y.

A function $f : X \to Y$ is said to be weakly irresolute if for each $x \in X$ and each $V \in SO(X, f(x))$, there exists a $U \in SO(X, x)$ such that $f(U) \subset Cl(V)$. The identity in Example 5 is not semi-continuous, but it is weakly irresolute, and f in Example 6 is semi-continuous, but not weakly irresolute. They are thus independent. We have the following being similar to [9, Theorem 4.10].

THEOREM 13. Let Y be (θ, s) -Hausdorff and $f_1 : X \to Y$ be weakly irresolute If $f_2 : X \to Y$ is $\alpha(\theta, s)$ -continuous and if $f_1 = f_2$ on a dense subset of X, then $f_1 = f_2$ on X.

Proof. Let f_2 be $\alpha(\theta, s)$ -continuous and $A = \{x \in X \mid f_1(x) = f_2(x)\}$. Suppose that $x \in X-A$. Then $f_1(x) \neq f_2(x)$ and there exist $V_1, V_2 \in$ SO(Y) such that $f_1(x) \in V_1$, $f_2(x) \in V_2$ and $Cl(V_1) \cap Cl(V_2) = \emptyset$. Since f_1 is weakly irresolute and f_2 is $\alpha(\theta, s)$ -continuous, there exist a $U_1 \in SO(X,x)$ and $U_2 \in \alpha O(X,x)$ such that $f_1(U_1) \subset Cl(V_1)$ and $f_2(U_2) \subset Cl(V_2)$. Therefore, we have $x \in U_1 \cap U_2 \in SO(X)$ [8] and $(U_1 \cap U_2) \cap A \emptyset$. Since $U_1 \cap U_2 \neq \emptyset$, $Int(U_1 \cap U_2) \neq \emptyset$ and $Int(U_1 \cap U_2) \cap A \neq \emptyset$. On the other hand, since $f_1 = f_2$ on D, D $\subset A$ and X = $Cl(D) \subset Cl(A)$ This contradicts. Thus A = X and $f_1 = f_2$ on X.

A space X is said to be α -irreducible if every pair of nonempty α open subsets of X has a nonempty intersection. A space X is said to
be semi θ -irreducible if the closure of every pair of nonempty semiopen
subsets of X has a nonempty intersection.

THEOREM 14. Let $f : X \to Y$ be $\alpha(\theta, s)$ -continuous surjection. If Y is semi θ -irreducible, then X is α -irreducible space.

Proof. Suppose that Y is not semi θ -irreducible. Then there are nonempty $U, V \in SO(Y)$ such that $Cl(U) \cap Cl(V) = \emptyset$. Since f is $\alpha(\theta, s)$ -continuous and surjective, there exist nonempty $G, H \in \alpha O(X)$ such that $f(G) \subset Cl(U)$ and $f(H) \subset Cl(V)$. Hence we have $G \subset$ $f^{-1}(Cl(U))$ and $H \subset f^{-1}(Cl(V))$. So $G \cap H = \emptyset$. X is not α -irreducible.

References

- 1 D.Andrijevic, Some properties of the topology of α -sets, Mat Vesnik 36 (1984), 1-10.
- 2 G I Chae, S N Maheshwari and P C Jain, Almost feebly continuous functions, U I T Report 13(1) (1982), 161-166
- 3 D Jankovic, I L Reilly and M K Vamanamurthy, On strongly compact topological spaces, Question and Answer in General Topology 6(1) (1988).
- 4 J E Joseph and M H Kwack, On S-closed spaces, Pro Amer. Math. Soc. 80 (1980), 341-348
- 5 N Levine, Semi open sects and semi continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41
- A S Mashhour, I A Hasauem and El Deeh, α-continuous and α-open mappings, Acta Math. Hung. 41 (1983), 213-218

- 7. A S Mashhour, M.E.Monsef, R.H Atia and F.M.Zeyada, On (θ, s) -continuous mappings and S-closed spaces (submitted)
- 8. O.Njastad, On some classes of nearly open sets, Pacific Jr. Math. 15(3) (1965), 961-970
- 9. T Noiri, Weakly α -continuous functions, Int. J. Math. & Math. Sci. 10(3) (1987), 483-490.
- 10 T.Noiri, On S-closed subspaces, Atti Acad. Naz Lin Rend. Circ. Mat. Palerino 64(8) (1978), 157-162

Selcuk Universitesi Eğitim Fakültesi Ars. Gör. 42090 Konya - Turkey

Dept. of Mathematics University of Ulsan Ulsan, 680-749 Korea