INTEGRATION OVER OPERATOR-VALUED MEASURES

Dong Hwa Kim

Introduction

Let H be a compact Hausedorff space, and \sum is a σ -algebra of subsets of H. Let E be a normed space and F a locally convex Hausdorff linear space generated by the family $\{q\}_F$ of continuous semi-norms on F. In the present paper we consider some problems of the theory of integration with respect to an operator-valued measure. Our purpose is develop an integration theory for functions on H with values in a normed space E with respect to a measure defined on \sum with values in L(E, F), the space of all continuous linear operators from E into Fequipped with the topology of bounded convergence on the unit ball of E. In addition we will give the integral representation for weakly compact operators from C(H, E) into F by considering a representing measure on the σ -algebra \sum of Borel subsets of H with values in L(E, F) and to consider the relation between them.

In section 1 we present some preliminaries and basic notations.

In section 2 we are to develop an integration theory of E-valued functions with respect to L(E, F)-valued measures and the integral is defined by means of linear functionals in the sense of Pettis, as followed in [4].

The last section is concerned with the generalization of some results of [1], [4] and we are to investigate the representation of weakly compact operators from C(H, E) into F.

1. Notations and Preliminaries

Let C(H, E) denote the continuous functions from H into E with the topology of uniform convergence. We denote families of all continuous semi-norms on E and F by $\{q\}_E, \{q\}_F$, respectively.

Received October 21,1996

Dong Hwa Kim

The topology of C(H, E) is generated by the semi-norms $q(f) = \sup_{s \in H} q(f(s))$, where $\{q\}_E$ ranges over all continuous semi-norms on E. Let E' and F' denote topological duals of E and F, respectively, and L(E, F) the space of all continuous linear operators from E into F, equipped with the topology of bounded convergence. Let E'' and F'' denote the dual of E' and F', respectively. By B_q we shall designate the q-unit ball for a continuous semi-norm q on E, that is, the set of all $x \in E$ with $q(x) \leq 1$, and B_q^0 is the polar of B_q in E', i.e., $B_q^0 = \{x' \in E'; \| < x, x' > \| \leq 1, x \in B_q\}$. We note that for each $x \in E$ we have $q(x) = \sup\{\| < x, x' > \|; x' \in B_q^0\}$.

Let f be a function from H into E and μ an operator-valued measure on \sum into L(E, F) with

$$\mu(\bigcup_{n=1}^{\infty}A_n) = \sum_{n=1}^{\infty}\mu(A_n), \quad A_i \cap A_j = \emptyset(i \neq j), \quad \bigcup_{n=1}^{\infty}A_n \in \sum.$$

Then it is known that for each $x \in E$, the set function $\mu_x; \sum \to F$ defined by $\mu_x(A) = \mu(A)x$ is a vector measure and conversely, if for $x \in A, \mu(.)x$ is a vector measure, then $\mu; \sum \to L(E, F)$ is countably additive with respect to the topology of convergence in L(E, F). Thus it can be proved that for each $y' \in F'$, the set function $y'\mu; \sum \to E'$ defined by

$$(y'\mu)(A)x = y'(\mu(A)x)$$
 for $A \in \sum$,

is an E'-valued measure.

DEFINITION 1.1. The set function $y'\mu$; $\sum \rightarrow E'$ has variation on \sum if

$$|y'\mu| = \sup \sum_{i=1}^{n} q(\mu(A \cap A_i)), \text{ where } A_i \cap A_j = \emptyset(i \neq j)$$

 $\{A_n\} \subset \sum_{i,j=1,2,\cdots,n} i, j = 1, 2, \cdots, n.$

For $y' \in F'$, we denote $||y'\mu||_q(A)$, the q-semivariation of $y'\mu$ on \sum , as

$$\|\mu\|_q(A) = \sup_{y' \in B^0_q} \sum_{i=1}^n q(y'\mu(A \cap A_i)), \quad A \in \sum_{i=1}^n q(y'\mu(A \cap A_i)),$$

 $\mathbf{254}$

We say that $A \in \sum i s \mu$ -null if $|y'\mu|(A) = 0$ for each $y' \in F'$. A function $f; H \to E$ will be called μ -measurable if there exists a sequence $\{f_n\}$ of simple functions converging μ -a.e to f. A sequence $\{f_n\}$ of functions of H into converges in q-semivariation to f if for each $\epsilon, \delta > 0$, there exists n_0 such that $\|\mu\|_q (\{s \in H; \|f_n(s) - f(s)\| \ge \delta\}) < \epsilon$ if $n \ge n_0$. If $\|\mu\|_q (A_n) \to 0$ for every sequence $\{A_n\}$ in $\sum, A_n \to \emptyset$, then the sequence $\{f_n\}$ converges to f in q-semivariation. So it is clear that $\bigcap_{n=1}^{\infty} B_n = \emptyset$ where $B_n = \bigcup_{n=1}^{\infty} A_n$ and it follows that $\|\mu\|_q (B_n) \to 0$ and that $\|\mu\|_q (A_n) \to 0$.

DEFINITION 1.2. If $A \in \sum$, we denote the characteristic function of A by χ_A . By a \sum -simple function f on H with values in E, we shall designate a function of the from

$$f=\sum_{n=1}^n x_i \chi_{A_i}$$

where $x_i \in A$, $A_i \in \sum$ and $A_i \cap A_j = \emptyset(i \neq j), \quad i, j = 1, 2, \cdots, n$.

2. Integration with respect to operator-valued measures

DEFINITION 2.1. Let μ ; $\sum \to L(E, F)$ be an operator-valued measure and f be a function from H into E. We say that f is μ -integrable over $A \in \sum$ if

- (1) For each $y' \in F'$, the integral $\int_A f(s)y'\mu(ds)$ exists (in the sense of [8],[9])
- (2) There exists an element $y_A \in F$, $y_A = \int_A f(s)\mu(ds)$ such that for all $y' \in F'$ we have $y'(y_A) = \int_A f(s)y'\mu(ds)$.

Since F is a locally convex-Hausdorff space, the integral is unique whenever it exists. It follows that every simple function is μ -integral and the integral of such a function is given by

$$\int_A f(s)\mu(ds) = \sum_{i=1}^n \mu(A \cap A_i) x_i.$$

LEMMA 2.2. [4] If $f; H \to E$ is $y'\mu$ -integral, then $|\int_A f(s)y'\mu(ds)| \leq \int_A ||f(s)|||y'\mu|(ds)$ for each $A \in \sum$ and if f is a bounded μ -integrable, then

$$q(\int_A f(s)\mu(ds)) \leq \|f\|_H \|\mu\|_q(A) \text{ for } A \in \sum,$$

where $||f||_{H} = \sup_{s \in H} |f(s)|.$

THEOREM 2.3. Let $\{f_n\}$ be a sequence of $y'\mu$ -integrable functions which

- (1) $\{f_n\}$ converges pointwise to f on H with respect to measure μ ,
- (2) $|f_n| < g$ for each n, where $g; H \to E$ is a $y'\mu$ -integrable function such that $\lim_n \int_{A_n} ||g|| |y'\mu| (ds) = 0$ uniformly in $y' \in F', A_n \to \emptyset(as \ n \to \infty)$.

Then f is $y'\mu$ -integrable and

$$\lim_{n} \int_{A} f(s) y' \mu(ds) = \int_{A} f(s) y' \mu(ds)$$

uniformly for $A \in \sum$.

Proof. For $\epsilon > 0$, let $B_n = \{s \in H; |f_n(s) - f(s)| > \epsilon |g(s)|\} - N$, where $N = \{s \in H; \lim_n f_n(s) \neq f(s)\}, A_n = \bigcup_{n=1}^{\infty} B_n \in \sum$. Clearly $A_n \to \emptyset$ (as $n \to \infty$). So $\mu(\lim_n A_n) = \lim_n \mu(A_n) = 0$.

Now it checked that

$$\begin{split} q(\int_{A} (f(s) - f_{n}(s))\mu(ds)) &\leq \sup_{y' \in B_{q}^{0}} |\int_{A - A_{n}} (f(s) - f_{n}(s))y'\mu(ds)| \\ &+ \sup_{y' \in B_{q}^{0}} |\int_{A \cap A_{n}} (f(s) - f_{n}(s))y'\mu(ds)| \\ &\leq \epsilon \int_{A - A_{n}} ||g(s)|| ||y'\mu||_{q}(ds) \\ &+ 2\sup_{y' \in B_{q}^{0}} \int_{A \cap A_{n}} ||g(s)|| |y'\mu|(ds) \text{ for all } n. \end{split}$$

256

Thus

$$\begin{split} q(\int_{A} f_{n}(s)\mu(ds) - \int_{A} f_{m}(s)\mu(ds)) \\ &\leq \epsilon \sup_{y' \in B_{q}^{0}} \int_{A-A_{n}} \|g(s)\| \|y'\mu\|(ds) \\ &+ 2\sup_{y' \in B_{q}^{0}} \int_{A-A_{n}} \|g(s)\| \|y'\mu\|(ds) \\ &+ \epsilon \sup_{y' \in B_{q}^{0}} \int_{A-A_{m}} \|g(s)\| \|y'\mu\|(ds) \\ &+ 2\sup_{y' \in B_{q}^{0}} \int_{A\cap A_{m}} \|g(s)\| \|y'\mu\|(ds) \text{ for all } m, \end{split}$$

Since $\sup_{y' \in B_q^o} \int_{A \cap A_n} ||g(s)|| |y'\mu|(ds) \to 0 (as \ n \to \infty)$, the sequence $\{f_n\}$ is Cauchy uniformly with respect to $A \in \sum$. If $\lim_n \int_A f_n(s)\mu(ds) = y_A$, then by applying the dominated convergence theorem we have

$$y'(y_A) = \lim_n \int_A f_n(s) y' \mu(ds)$$
$$= \int_A f(s) y' \mu(ds) \text{ for each } A \in \sum .$$

THEOREM 2.4. Let F be sequentially complete and the q-semivaluation of μ is continuous at \emptyset . If $f; H \to E$ is a bounded measurable function, then f is μ -integrable.

Proof. Since $\{f_n\}$ is a bounded measurable function, there exists a sequence $\{f_n\}$ of simple functions such that $\{f_n\}$ converges pointwise to f an T and $||f_n||_H \leq ||f||_H$ for all n.

For each $\epsilon > 0$, let $B_n = \{s \in H; ||f(s) - f_n(s)|| \ge \epsilon\}$ and $A_n = \bigcup_{n=1}^{\infty} B_n$, then $A_n \to \emptyset$ (as $n \to \infty$), $\lim \mu(A_n) = \mu(\lim A_n) = 0$. So for $y' \in F'$ there exists a positive integer n_0 such that $|y'\mu|(A_n)\epsilon$ for all $n \ge n_0$.

n.

It follows that

$$\begin{split} &\int_{A} \|f(s) - f_n(s)\| |y'\mu|(ds) \\ \leq &\int_{A-A_n} \|f(s) - f_n(s)\| |y'\mu|(ds) + \int_{A\cap A_n} \|f(s) - f_n(s)\| |y'\mu|(ds) \\ &\leq \epsilon |y'\mu|(A-A_n) + 2M|y'\mu|(A\cap A_n) \\ \leq \epsilon (|y'\mu|(A-A_n) + 2M) \text{ if } n \geq n_0, \text{ where } M = \sup_{s \in H} |f(s)|. \end{split}$$

Thus f is $y'\mu$ -integrable and $\lim_n \int_A f(s)y'\mu(ds) = \int_A f(s)y'\mu(ds)$ for each $y' \in F'$. Thus $q(\int_A f_n(s)\mu(ds) - \int_A f_m(s)\mu(ds)) \le \epsilon(\|\mu\|_q (A - A_n) + 2M) + \epsilon(\|\mu\|_q (A - A_m) + 2M)$ for all $n, m \ge n_0$.

Thus the sequence $\{f_n\}$ is Cauchy uniformly for $A \in \sum$. So it follows that every bounded measurable function is μ -integrable. If $\int_A f_n(s)\mu(ds)$ converges to y_A in F, by applying the dominated convergence theorem it then follows that $y_A = \int_A f(s)\mu(ds) = \lim_n \int_A f_n(s)\mu(ds)$. So every bounded measurable function is μ -integrable if F is sequentially complete.

LEMMA 2.5. [4] Let μ be an operator measure on \sum and $\{f_n\}$ a sequence of μ -integrable functions which $\{f_n\}$ converges to f pointwise on H, and $\{\int_A f_n(s)\mu(ds)\}$ is Cauchy for $A \in \sum$. Then f is μ -integrable and $\int_A f(s)\mu(ds) = \lim_n \int_A f_n(s)\mu(ds)$ uniformly for $A \in \sum$.

THEOREM 2.6. If F is sequentially complete and $f; H \to E$ is $y'\mu$ integrable and $\lim_n \int_{A_n} ||f(s)|| |y'\mu| (ds) = 0$ uniformly and $A_n \to \emptyset$.

Then f is μ -integrable if and only if there is a sequence $\{f_n\}$ of bounded measurable functions which converges pointwise to f and $\{\int_A f_n(s)\mu(ds)\}$ is Cauchy uniformly for $A \in \sum$.

Proof. Every μ -integrable functions is μ -measurable. For each n, let $A_n = \{s \in H; |f(s)| \leq n\}$ and $f_n = f_{\chi_{A_n}}$. Then $\{f_n\}$ is a sequence of bounded integrable functions converging to f and $(\int_A f_n(s)\mu(ds))$ is Cauchy uniformly for $A \in \sum$.

Conversely let $A_n = \{s \in T | || f(s) - f_n(s)|| \ge \epsilon\}$. For every $\epsilon > 0$ and there exists n_0 such that

$$|y'\mu|(A_n) < \epsilon \text{ for } n \ge n_0, \ y' \in F'.$$

258

It follows that

$$\int_{A} \|f(s) - f_n(s)\| \|y'\mu\| (ds) \le \epsilon (M + \|\mu\|_q (A - A_n)), \text{ where } M = \sup_{s \in H} |f(s)|.$$

So $q(\int_A f_n(s)\mu(ds) - \int_A f_m(s)\mu(ds)) \le \epsilon(\|\mu\|_q(A - A_n) + \|\mu\|_q(A - A_m) + 2M)$ which shows that $\{\int_A f_n(s)\mu(ds)\}$ is Cauchy for $A \in \sum$. Since F is sequentially complete,

$$y'(y_A) = \lim_n \int_A f_n(s) y' \mu(ds) = \int_A f(s) y' \mu(ds) \text{ for } y' \in F'$$

Then, by lemma 2.5

$$\int_A f(s)\mu(ds) = \lim_n \int_A f_n(s)\mu(ds) \text{ for } A \in \sum.$$

3. Representation of weakly compact operators

In this section, we assume that H is Hausdorff topological space and \sum is σ -algebra of all compact subsets of H. Let E and F be locally convex Hausdorff spaces.

Let C(H, E) be the space of all continuous functions from H into E endowed with the usual uniform norm. The topology for C(H, E) is generated by the semi norms $\{q\}_E$, $q(f) = \sup\{q(f(s)); s \in H\}$.

The linear operator $T; C(H, E) \to F$ is continuous if and only if there exists a pairing (p, q) such that $||T||_{(p,q)} = \sup\{q(T(f)); p(f) \leq 1\}, p \in \{q\}_E, q \in \{q\}_F.$

DEFINITION 3.1. An operator-valued measure μ ; $\sum \to L(E, F)$ said to be of bounded (p,q)-variation on $A \in \sum$ for a continuous semi-norm p(q) on E(F) if $\{q(\sum_{i=1}^{n} \mu(A_i)x_i); A_i \cap A_j = \emptyset \ (i \neq j), \ p(x_i) \leq 1\}$ is bounded and we define the (p,q)-variation of μ on $A \in \sum, \|\mu\|_{(p,q)} =$ $\sup_{y' \in B_q^0} \{q(\sum_{i=1}^{n} y'\mu(A_i)x_i); y' \in F', \ p(x_i) \leq 1\}.$

DEFINITION 3.2 A measure $\mu : \sum \to L(E, F)$ is said to be regular for each $\epsilon > 0$, $E \in \sum$ there is a compact set A and an open set B such that $A \subset E \subset B$ and $\|\mu\|_q (B-A) < \epsilon, q \in \{q\}_F$. LEMMA 3.3. [5] Let E and F be topological spaces and a linear operator $T; E \to F$ is weakly compact. Then the following are equivalent.

- (1) T'' maps E'' into F,
- (2) If F' is equipped by the Mackey topology M(F', F) and E' with the strong topology $\beta(E', E)$, then T' is continuous.

THEOREM 3.4. If T is a continuous weakly compact from C(H, E)into F. Then there exists a unique operator-valued measure $\mu : \sum \rightarrow L(E, F)$ such that

- The E'-valued measure y'μ on ∑ defined by y'μ(A) = μ_{y'}(A) is regular, and y' → y'μ is linear continuous for y' ∈ F'.
- (2) $T(f) = \int_H f(s)\mu(ds)$ for each $f \in C(H, E)$.
- (3) If T is (p,q)-related, then $\|\mu\|_{(p,q)} = \sup\{q(T(f); \|f\|_p \le 1\}$ for $p \in \{q\}_E, q \in \{p\}_F, \|\mu\|_{(p,q)} = \|T\|_{(p,q)}$.
- (4) $y'\mu = T'y'$, for each $y' \in F'$

Conversely if $\mu : \sum \to L(E, F)$ is a measure which satisfies (1), then the operator T by (2) is weakly compact from C(H, E) into F which satisfies (3) and (4).

Proof. If $T; C(H, E) \to F$ is weakly compact, then T'' maps C(H, E)''into F. Define $\mu(A); E \to F$ by $\mu(A)x = T''(\chi_A x)''$ for each $A \in \sum$.

Consequently it follows that for $y' \in F'$ and $x \in E$,

(*)
$$y'\mu(A)x = y'(T''(\chi_A x)'') = (T'y')(\chi_A x)'' = \mu_{y'}(A)x.$$

Thus $y'\mu = T'y' = \mu_{y'}$ and $q(\mu(A)x) \leq \|\mu\|_q(A)q(x)$ shows that $\mu(A); E \to F$ is continuous. Since $T; C(H, E) \to F$ is continuous, there is $q \in \{q\}_E$ such that $\|T\|_{(p,q)} < \infty, q \in \{q\}_F$. Then for $f \in C(H, E), p(f) \leq 1$, we have

$$| < f, y'\mu > | = | < f, T'y' > | \le | < Tf, y' > | \le ||T||_{(p,q)}.$$

Thus we have $\|\mu\|_{(p,q)} \leq \|T\|_{(p,q)}$.

On the other hand we have $\int_{H} f(s)\mu(ds) = T''(\chi_A f)'' \in F$ and $\int_{H} f(s)\mu(ds) = T''(f) = T(f)$ from the above statement (*). For $f \in C(H, E), q(f) \leq 1$ and $y' \in B^0_q, |y'T(f)| = |\int_{H} f(s)y'\mu(ds)| \leq ||y'\mu||_q \leq ||\mu||_{(p,q)}$. Thus $||T||_{(p,q)} \leq ||\mu||_{(p,q)}$. Finally, the uniqueness of μ is an immediate consequence of the condition (2).

260

Conversely, let μ be L(E, F)-valued measure with $y'\mu \in rcabv(\sum, E')$, the space of all regular E'-valued measures of finite variation on \sum . To prove the compactness of T, consider any bounded set $V = \{f \in C(H, E); f(H) \subset E\}$ in C(H, E) and let V denote the convex balanced hull of the set $W = \{\sum_{i=1}^{n} x_i \mu(A_i); x_i \in E, A_i \cap A_j = \emptyset \ (i \neq j), p(x_i) \leq 1\} \subset E$. Then W is bounded in E. Clearly W is convex and balanced hull. From (4) W is weakly compact. It follows that the polar W^0 in W is a neighborhood of zero in F' for the Mackey topology M(F', F). For $y' \in W^0$ and $f \in C(H, E), ||f||_s \leq 1$, we have $|y'(\sum_{i=1}^{n} \mu(A_i)x_i| \leq 1$. This implies that $|y' \int_H f(s)\mu(ds)| \leq 1$. Thus $| < T'y', f > | = | < y', Tf > | \leq 1$ which prove that $T'y' \in V^0$.

So $T'(W^0) \subset V^0$ and consequently T' is continuous with respect to M(F', F). Hence T is weakly compact.

References

- 1 C Debieve, Integration of vector-valued functions with respect to vector-valued measures, Rev. Roum Math. Pures. Appl 7 no 26 (1981).
- 2. C Foias and I.Singer, Some remarks on the representation of linear operators in spaces of vector-valued continuous functions, Rev Roum Math. Pures. et Appl 5 (1960).
- 3. C Swartz, Integrability for the Dobrakov integral, Czech. Math. J, 30 105 (1980)
- 4 D R Lewis, Integration with respect to measure, Pacific J, Math 33 (1970).
- 5. L Narrei, E Beckenstein, Topological vector spaces, Marcel Dekker, Inc (1985).
- 6 K. Swong, A representation theory of continuous linear maps, Math Ann 155 (1964)
- 7. M P Ulanov, Vector-valued set functions and the representation of continuous linear mappings, Sibusk Mat Z. 9 (1968)
- 8 N. Dinculeanu, Vector measures, Oxford, Pergamon Press (1967)
- 9 N Dunford and J Schwartz, *Linear operators, Part 1*, Interscience, New York (1958).
- 10. S K Roy and N D Chakraborty, Integration of vector-valued functions with respect to an operator-valued measure, Czech Math J. 36, Praha (1986).

Department of Mathematics Education Kyungnam University Masan 631-701, Korea