A NOTE ON SEVERAL CONTINUOUS FUNCTIONS ON FUZZY CONVERGENCE SPACES

HYO IL CHOI

1. Introduction

The convergence function between the filters on a given set S and the subsets of S was introduced by D.C.Kent ([9]) in 1964 and it may be regarded as a generation of a topological space and further studied by many authors.

After Zadech created fuzzy sets in his classical paper ([10]), Chang ([3]) used them to introduce the concept of a fuzzy sets using metric defined as the Hausdorff metric between the supported endographs. Recently, B.Y.Lee and J.H.Park ([12]) defined a new structure, called by fuzzy convergence structure, using prefilter.

We introduced the several continuous functions, that is, fuzzy super continuity, fuzzy δ -continuity, and fuzzy weakly δ -continuity in fuzzy convergence spaces ([5]).

In this paper, we introduce new continuities in fuzzy convergence spaces, that is, fuzzy θ -continuity, fuzzy strongly θ -continuity, fuzzy almost continuity, and fuzzy weakly almost continuity. And we study the relationships between them.

2. Preliminaries

The reader is asked to refer to [3], [5], [10], [15], [17] and [21], for fuzzy sets fuzzy convergence spaces, however, a brief review of basic terms will be given in here.

Let X be a nonempty set and I the unit closed interval I = [0, 1]. A fuzzy set A in X is an element of the set F(X) of all functions from X into I and the elements of F(X) are called fuzzy subsets ([10]). For fuzzy set A and B in X, $A \subseteq B$ if $A(x) \leq B(x)$ for all x in X. The

Received October 17,1996

This research supported by the Rearch Foundation Grant of Kyungnam University

symbol \emptyset is used to denote the empty fuzzy set $\emptyset(x) = 0$ for all $x \in X$ and for X we have the definition X(x) = 1 for all $x \in X$.

A fuzzy point p in X is fuzzy set in X defined by $p(x) = \lambda$ ($0 < \lambda \le 1$) for $x = x_p$ and p(x) = 0 for $x \neq x_p$. Then, we call x_p the support of p and λ the value of p. A fuzzy point $p \in A$, where A is a fuzzy set in X, if $p(x_p) \le A(x_p)$.

A fuzzy point p is said to be quasi coincident with A, denoted by pqA, if $p(x_p) + A(x_p) > 1$ for a fuzzy point p and a fuzzy set A (see in [21]). A fuzzy set A is said to be quasi coincident with a fuzzy set B, denoted by AqB, if there exists some x in X such that A(x)+B(x) > 1.

Let f is a function from a set X into a set Y and A, B be the fuzzy sets in X, Y, respectively. Then we define $f^{-1}(B)$ and f(A) as follows:

$$f^{-1}(B)(x) = B(f(x))$$

and

$$f(A)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} A(x), & \text{if } f^{-1}(y) \neq \emptyset\\ 0, & \text{otherwise} \end{cases}$$

In here, we introduce fuzzy convergence spaces using prefiters, and we define the set functions Γ_c , I_c and introduce their properties.

DEFINITION 2.1. ([2]) A prefilter on X is a nonempty subset \mathcal{F} of the set I^X of functions from X into closed interval I = [0, 1] with the properties:

- (1) If $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$
- (2) If $A \in \mathcal{F}$ and $A \subseteq B$, then $B \in \mathcal{F}$
- (3) $\emptyset \notin \mathcal{F}$

If \mathcal{F} and \mathcal{G} are prefilters on X, \mathcal{F} is said to be finer than \mathcal{G} (\mathcal{G} is coarser than \mathcal{F}) if and only if $\mathcal{G} \subseteq \mathcal{F}$. A prefilter \mathcal{F} on X is said to be *ultra prefilter* if it is no other prefilter finer than \mathcal{F} (i.e., it is maximal for the inclusion relation among prefilters).

A prefilterbase on X is the nonempty subset β of I^X with the properties:

- (1) If $A, B \in \beta$, there exists $C \in \beta$ such that $C \subseteq A \cap B$.
- (2) $\emptyset \notin \beta$.

If β is a prefilterbase then $\langle \beta \rangle = \{A \in I^X : B \subseteq A \text{ for some } B \in \beta\}$ is a prefilter. If $\langle \beta \rangle = \mathcal{F}$, we say that β is a prefilterbase for the prefilter \mathcal{F} , or that β generates \mathcal{F} .

We define convergence structure by prefilter, called fuzzy convergence structure. For nonempty universal set X, P(X) denotes the set of all prefilters on X and F(X) the set of all fuzzy sets on X. For each fuzzy point p in X, \dot{p} is denoted by

$$\{A \in I^X : pqA\}$$

Let f be a function from X into Y. Then for a fuzzy point p in fuzzy set A in X, $f(p) \in f(A)$ and for two prefilters \mathcal{F}, \mathcal{G} on X, $f(\mathcal{F} \cap \mathcal{G}) =$ $f(\mathcal{F}) \cap f(\mathcal{G})$ and so $f(\mathcal{F} \cap \dot{p}) = f(\mathcal{F}) \cap f(\dot{p})$ and $\dot{f}(p) = f(\dot{p})$. For a fuzzy prefilter \mathcal{F} on X, $f(\mathcal{F})$ is said to be the prefilter on Y generated by $\{f(A) : A \in \mathcal{F}\}$.

DEFINITION 2.2. ([12]) A fuzzy convergence structure on X is a function C_X from P(X) into F(X) satisfying the following conditions:

(FC1) For each fuzzy point p in X, $p \in C_X(\dot{p})$.

(FC2) For $\mathcal{F}, \mathcal{G} \in P(X)$, if $\mathcal{F} \subseteq \mathcal{G}$ then $C_X(\mathcal{F}) \subseteq C_X(\mathcal{G})$.

(FC3) If $p \in C_X(\mathcal{F})$, then $p \in C_X(\mathcal{F} \cap \dot{p})$.

Then the pair (X, C_X) is said to be fuzzy convergence space. If $p \in C_X(\mathcal{F})$, we say that $\mathcal{F} C_X$ -converges to a fuzzy point p. The prefilter $\mathcal{V}_{C_X}(p)$ obtain by intersecting all prefilters which C_X -converge to p is said to be the C_X -neighborhood prefilter at p. If $\mathcal{V}_{C_X}(p) C_X$ -convergences to p for each fuzzy point p in X, then C_X is called a fuzzy pretopological structure, and (X, C_X) a fuzzy pretopological space. The fuzzy pretopological structure C_X is said to be fuzzy topological space, if for each fuzzy point p in X, the prefilter $\mathcal{V}_{C_X}(p)$ has a prefilterbase $\beta_{C_X}(p) \subseteq \mathcal{V}_{C_X}(p)$ with the following property:

 $rq \sqcup \in \beta_{C_X}(p)$ implies $\sqcup \in \beta_{C_X}(r)$

Throughout this paper, let C(X) be the set of all fuzzy convergence structures on X. Then we define that $C_1 \leq C_2$ for $C_1, C_2 \in C(X)$ if and only if $C_2(\mathcal{F}) \subseteq C_1(\mathcal{F})$ for all $\mathcal{F} \in P(X)$. If $C_1 \leq C_2$ for $C_1, C_2 \in C(X)$, we say that C_2 is finer than C_1 , also that C_1 is coarser than C_2 .

Let F(X) be the set of all fuzzy sets in X and A a fuzzy set in X. The set function $\Gamma_{C_X}(\text{resp. } I_{C_X})$ from F(X) into F(X) is given by $\Gamma_{C_X}(A) = \{p : p \text{ is fuzzy point in } X \text{ and } p \in C_X(\mathcal{F}) \text{ for some ultra}$ prefilter \mathcal{F} with $A \in \mathcal{F} \}$ (resp. $I_{C_X}(A) = \{p : A \in \mathcal{V}_{C_X}(p) \text{ and } p \text{ is}$ a fuzzy point in X }). Then $\Gamma_{C_X}(A)$ (resp. $I_{C_X}(A)$) is called fuzzy closure of fuzzy set A (resp. fuzzy interor of A).

For a prefilter \mathcal{F} on X, $\Gamma_{C_X}(\mathcal{F})$ and $I_{C_X}(\mathcal{F})$ are the prefilters on X generated by $\{\Gamma_{C_X}(A) : A \in \mathcal{F}\}$ and $\{I_{C_X}(A) : A \in \mathcal{F}\}$, respectively.

DEFINITION 2.3. The fuzzy convergence space (X, C_X) is called fuzzy regular (resp. fuzzy semi-regular) if $\Gamma_{C_X}(\mathcal{F})$ (resp. $I_{C_X}(\Gamma_{C_X}(\mathcal{F}))$) C_X -converges to p, whenever fuzzy prefilter \mathcal{F} C_X -converges to fuzzy point p.

From definition of set functions Γ_{C_X} and I_{C_X} , we can obtain the followings : $\Gamma_{C_X}(A) \supseteq A$ and $I_{C_X}(A) \subseteq A$ for each fuzzy set A in X.

DEFINITION 2.4. A function f from (X, C_X) to (Y, C_Y) is continuous at p if $f(\mathcal{F})$ C_Y -converges to f(p), whenever a prefilter \mathcal{F} on X C_X -converges to p.

3. θ - continuity and almost continuity on fuzzy convergence spaces

In this section, we define θ - continuity, strongly θ -continuity, almost continuity, weakly almost continuity on fuzzy convergence spaces and investigate the relationships among them.

Throught this section, let (X, C_X) and (Y, C_Y) be the fuzzy convergence spaces and p a fuzzy point in X.

DEFINITION 3.1. A function f from (X, C_X) to (Y, C_Y) is fuzzy θ -continuous at p in X if $\Gamma_{C_Y}(\mathcal{V}_{C_Y}(f(p))) \subseteq f(\Gamma_{C_X}\mathcal{F})$ whenever a prefilter \mathcal{F} on $X C_X$ -converges to p.

DEFINITION 3.2. A function f from (X, C_X) to (Y, C_Y) is fuzzy strongly θ -continuous at p in X if $\mathcal{V}_{C_Y}(f(p)) \subseteq f(\Gamma_{C_X}(\mathcal{F}))$ whenever a prefilter \mathcal{F} on X C_X -converges to p. THEOREM 3.2. A function f from (X, C_X) to (Y, C_Y) is fuzzy strongly θ -continuous at p in X, then f is fuzzy θ -continuous at p in X.

Proof. Suppose that a prefilter \mathcal{F} C_X -converges to fuzzy point p in X. Then $\mathcal{V}_{C_Y}(f(p)) \subseteq f(\Gamma_{C_X}(\mathcal{F}))$ by definition 3.2. Since $\Gamma_{C_Y}(\mathcal{V}_{C_Y}(f(p))) \subseteq \mathcal{V}_{C_Y}(f(p))$, $\Gamma_{C_Y}(\mathcal{V}_{C_Y}(f(p))) \subseteq f(\Gamma_{C_X}(\mathcal{F}))$. Accordingly, f is fuzzy θ -continuous at p in X.

THEOREM 3.4. Let a f from (X, C_X) to (Y, C_Y) be a function and (X, C_X) regular convergence space. If f is fuzzy continuous at p in X, then f is fuzzy strongly θ -continuous at p in X.

Proof. Suppose that a prefilter $\mathcal{F} C_X$ -converges to fuzzy point p in X. Then, since (X, C_X) is regular $\Gamma C_X(\mathcal{F}) \ C_X$ -converges to p. Since f is fuzzy continuous, $f(\Gamma_{C_X}(\mathcal{F})) \ C_Y$ -converges to f(p) in Y, and so $\mathcal{V}_{C_Y}(f(p)) \subseteq f(\Gamma_{C_X}(\mathcal{F}))$. Accordingly, f is fuzzy strongly θ -continuous at p in X.

DEFINITION 3.5. A function f from (X, C_X) to (Y, C_Y) is fuzzy almost continuous at p in X if $I_{C_Y}(\Gamma_{C_Y}(\mathcal{V}_{C_Y}(f(p)))) \subseteq f(\mathcal{F})$ whenever a prefilter \mathcal{F} on X C_X -converges to p.

DEFINITION 3.6. A function f from (X, C_X) to (Y, C_Y) is fuzzy weakly almost continuous at p in X if $\Gamma_{C_Y}(\mathcal{V}_{C_Y}(f(p))) \subseteq f(\mathcal{F})$ whenever a prefilter \mathcal{F} on $X C_X$ -converges to p.

THEOREM 3.7. If a function f from (X, C_X) to (Y, C_Y) is fuzzy almost continuous at p in X, then f is fuzzy weakly almost continuous at p

Proof. Suppose that a prefilter \mathcal{F} C_X -converges to p in X. Then $I_{C_Y}(\Gamma_{C_Y}(\mathcal{V}_{C_Y}(f(p)))) \subseteq f(\mathcal{F})$ by definition 3.5. Since $\Gamma_{C_Y}(\mathcal{V}_{C_Y}(f(p))) \subseteq I_{C_Y}(\Gamma_{C_Y}(\mathcal{V}_{C_Y}(f(p))))$, $\Gamma_{C_Y}(\mathcal{V}_{C_Y}(f(p))) \subseteq f(\mathcal{F})$. Accordingly f is fuzzy weakly almost continuous at p.

THEOREM 3.8. If a function f from (X, C_X) to (Y, C_Y) is fuzzy θ -continuous at p in X, then it is fuzzy weakly almost continuous at p.

Proof. Suppose that a prefilter \mathcal{F} C_X -converges to p in X. Then $\Gamma_{C_Y}(\mathcal{V}_{C_Y}(f(p))) \subseteq f(\Gamma_{C_X}(\mathcal{F}))$ by definition 3.1. Since $f(\Gamma_{C_X}(\mathcal{F})) \subseteq$

Hyo Il Choi

 $f(\mathcal{F}), \Gamma_{C_Y}(\mathcal{V}_{C_Y}(f(p))) \subseteq f(\mathcal{F})$. Accordingly, f is fuzzy weakly almost continuous at p.

From definition 3.2 and there 3.8, we obtain that if f is fuzzy strongly θ continuous then f is fuzzy weakly almost continuous. And by theorem 3.4 and 3.8, if (X, C_X) is regular space and f is fuzzy continuous at p in X, then f is fuzzy θ -continuous and fuzzy weakly almost continuous at p.

THEOREM 3.9. If a function from (X, C_X) to (Y, C_Y) is fuzzy continuous at p in X, then f is fuzzy weakly almost continuous at p.

Proof. Suppose that a prefilter $\mathcal{F} C_X$ -converges to p in X. Then $f(\mathcal{F}) C_Y$ -converges to f(p) in Y by definition 2.4. But $\mathcal{V}_{C_Y}(f(p)) \subseteq f(\mathcal{F})$ and $\Gamma_{C_Y}(\mathcal{V}_{C_Y}(f(p))) \subseteq \mathcal{V}_{C_Y}f(p)$. And so $\Gamma_{C_Y}(\mathcal{V}_{C_Y}(f(p))) \subseteq f(\mathcal{F})$. Accordingly f is fuzzy weakly almost continuous at p.

THEOREM 3.10. Let f from (X, C_X) to (Y, C_Y) be a function and (Y, C_Y) fuzzy regular pretopogical space. If f is fuzzy weakly almost continuous at p in X, then f is continuous at p.

Proof. Suppose that a prefilter $\mathcal{F} C_X$ -converges to p in X. Since (Y, C_Y) is pretopological convergence space, $\mathcal{V}_{C_Y}(f(p)) C_Y$ -converges to f(p). And so $\Gamma_{C_Y}(\mathcal{V}_{C_Y}(f(p))) C_Y$ -converges to f(p) in Y by definition of regular space. Thus $\mathcal{V}_{C_Y}(f(p)) \subseteq \Gamma_{C_Y}(\mathcal{V}_{C_Y}(f(p)))$ by definition of $\mathcal{V}_{C_Y}(f(p))$. But $\Gamma_{C_Y}(\mathcal{V}_{C_Y}(f(p))) \subseteq \mathcal{V}_{C_Y}(f(p))$ by definition of Γ_{C_Y} , that is, $\Gamma_{C_Y}(\mathcal{V}_{C_Y}(f(p))) = \mathcal{V}_{C_Y}(f(p))$.

Accordingly $\mathcal{V}_{C_Y}(f(p)) = \Gamma_{C_Y}(\mathcal{V}_{C_Y}(f(p))) \subseteq f(\mathcal{F})$ and $\mathcal{V}_{C_Y}(f(p))$ C_Y -converges to f(p) in Y. Hence $f(\mathcal{F})$ C_Y -converges to f(p), and so f is fuzzy continuous.

From proof of theorem 3.10, we obtain the following.

COROLLAY 3.11. Let f from (X, C_X) to (Y, C_Y) be a function and (Y, C_Y) regular pretopological convergence space. If f is fuzzy almost continuous at p in X, then f is fuzzy continuous at p.

References

- 1 K.K.Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 32 (1981), 14-32.
- J. J. Chadwick, A generalised form of compactness in fuzzy topological spaces, J. Math. Anal. Appl. 162 (1991), 92-110.

- 3 C. L Chang, Fuzzy topological spaces, J. Math. Anal Appl. 24 (1968), 182-190
- 4. H.I.Choi, On product convergence spaces and realcompact convergence ordered spaces, Ph. D. Thesis, Gyeongsang National Univ, (1988).
- H. I Choi, Weakly δ-continuous functions on convergence space, Kyungnam Univ, (1991), 293-298.
- 6. L. M Friedler, Fuzzy closed and fuzzy perfect mappings, J Math Anal. Appl 125 (1987), 451-460
- 7 G Gerla, On the concept of fuzzy point, Fuzzy sets and Systems 18 (1986), 159-172
- 8. K Hur and J. Y. Choi, On fuzzy convergence spaces, J. Math Honam 9 (1987), 89-98
- 9 D C Kent, Convergence functions and their related topologies, Fundamenta Math LIV_(1964), 125-133.
- 10. L. A. Zadch, Fuzzy sets, Information and Control 8 (1965), 29-44
- 11 B Y Lee, On the initial convergence structures, Ph. D. Thesis, Gyeongsang National Univ., (1990)
- 12. B Y Lee and J H Park, Fuzzy convergence structure and compactifications(to appear)
- 13. A. S. Mashhour and M. H. Ghanim, Fuzzy closure spaces, J Math. Anal. Appl. 106 (1985), 54-170
- 14. K C Min, Fuzzy limit spaces, Fuzzy sets and Systems 32 (1989), 343-357.
- 15 S. Namda, On Fuzzy topological spaces, Fuzzy Sets and Systems 19 (1986), 193-197.
- 16 M. A. de Prada and M. Saralegui, Fuzzy filters, J. Math. Anal Appl. 129 (1988), 560-568
- 17. P. M. Pu and Y. M. Liu, Fuzzy topology, I. Neighborhood structure of a fuzzy point and Moore-Snuth convergence, J. Math. Anal. Appl. 76 (1980), 571-599
- P M Pu and Y. M Liu, Fuzzy topology, II Product and quotient spaces, J Math Anal Appl 77 (1980), 20-37
- 19. R H Warren, Neighborhoods, bases and continuity in fuzzy topological space, Rocky Mountain J Math. 8 (1978), 459-470
- 20. T. H. Yalvac, Semi-interiror and semi-closure of a fuzzy set, J. Math. Anal. Appl 132 (1988), 356-364.
- 21. S Y Yoon and S II. Park, Fuzzy weakly semi-continuous mappings, Comm Korean Math. Soc. 10 no. 1 (1995), 175-186.

Department of Mathematics Education Kyungnam University Masan 631-701, Korea