CHARACTERIZATIONS OF CONTINUOUS MAPPINGS IN FRÉCHET SPACES

WOO CHORL HONG

1. Introduction.

A. V. Arhangel'skii [1] introduced a Fréchet space, which satisfies the following property (called the Fréchet-Urysohn property [4, 7 and 8]): The closure of any subset A of a topological space X is the set of limits of sequences in A.

It is clear that each first-countable space (and so each metric space) is a Fréchet space. Many authors introduced other generalizations of a first-countable space and studied some properties of these spaces and their related topics (see [2]-[5], [7] and [8]).

In section 2, we introduce a concept of sequential convergence structures and show that Fréchet spaces are determined by these structures. The main results of this section 2 were announced in [6] and hence we omit the proofs. In the final section, we characterize continuous mappings in Fréchet spaces using sequential convergence structures.

2. Fréchet spaces.

Let X be a non-empty set and let S(X) be the set of all sequences in X. Sequences in X will be denoted by small Greek letters α, β , etc. The k-th term of the sequence α is denoted by $\alpha(k)$.

A non-empty subfamily L of the Cartesian product $S(X) \times X$ is called a sequential convergence structure on X if it satisfies the following properties:

- (SC1) For each $x \in X$, $((x), x) \in L$, where (x) is the constant sequence whose k-th term is x for all indices k.
- (SC2) If $(\alpha, x) \in L$, then $(\beta, x) \in L$ for each subsequence β of α .
- (SC3) Let $x \in X$ and $A \subset X$. If $(\alpha, x) \notin L$ for each $\alpha \in S(A)$, then $(\beta, x) \notin L$ for each $\beta \in S(\{y | (\alpha, y) \in L \text{ for some } \alpha \in S(A)\}).$

We denote SC[X] by the set of all sequential convergence structures on X.

Received September 19,1996

THEOREM 2.1. For $L \in SC[X]$, define a mapping $C_L : P(X) \rightarrow P(X)$ as follows: for each subset A of X,

$$C_L(A) = \{x \in X | (\alpha, x) \in L \text{ for some } \alpha \in S(A)\}.$$

Then, C_L is a Kuratowski closure operator on X, that is, (X, C_L) is a topological space.

Let $\mathcal{L}(C_L)$ denote the set of all paires (α, x) such that α converges to x in the space (X, C_L) . Now we are going to determine the relations between L and $\mathcal{L}(C_L)$.

LEMMA 2.2. Let $L \in SC[X]$ and $x \in A \subset X$. Then, A is a neighborhood of x in (X, C_L) if and only if for each $(\alpha, x) \in L$, α is eventually in A.

THEOREM 2.3. Let $L \in SC[X]$. Then, we have

- (1) $L \subset \mathcal{L}(C_L) \in SC[X]$ and
- (2) $C_L = C_{\mathcal{L}(C_L)}$.

COROLLARY 2.4. (1) For each $L \in SC[X]$, $\bigcup \{L' \in SC[X] | C_L = C_{L'}\} = \mathcal{L}(C_L)$.

(2) Let \mathfrak{S} be a Fréchet topology on X and let $L_{\mathfrak{S}} = \{(\alpha, x) \in S(X) \times X | \alpha \text{ converges to } x \text{ in } (X, \mathfrak{S}) \}$. Then, $L_{\mathfrak{S}} = \mathcal{L}(C_{L_{\mathfrak{S}}}) \in SC[X]$.

It is obvious that for each $L \in SC[X]$, (X, C_L) is a Fréchet space.

EXAMPLE. In general, $L \neq \mathcal{L}(C_L)$. Let \mathbb{Q} be the rational number set with usual topology. Let L_Q denote the set of all paires $(\alpha, x) \in$ $S(\mathbb{Q}) \times \mathbb{Q}$ such that α converges to x in \mathbb{Q} and $L = \{((x), x) | x \in \mathbb{Q}\} \cup$ $\{(\alpha, x) \in S(\mathbb{Q}) \times \mathbb{Q} | \alpha \text{ converges to } x \text{ in } \mathbb{Q} \text{ and } \alpha \text{ is either strictly in$ $creasing or strictly decreasing }. Then <math>L_Q, L \in SC[\mathbb{Q}]$. Since C_{L_Q} is the closure operator in the usual space $\mathbb{Q}, \mathcal{L}(C_{L_Q}) = L_Q$. Moreover, it is easy to see that $C_{L_Q} = C_L$. Hence $L \subsetneq L_Q = \mathcal{L}(C_{L_Q}) = \mathcal{L}(C_L)$.

3. Continuous mappings in Fréchet spaces.

Recall a well-known and useful theorem on continuous mappings in first-countable spaces:

THEOREM 3.1. Let (X, \mathfrak{T}) and (Y, \mathcal{S}) be two first-countable spaces. A mapping $f : (X, \mathfrak{T}) \to (Y, \mathcal{S})$ is continuous if and only if for each $(\alpha, x) \in L_{\mathfrak{T}}, (f(\alpha), f(x)) \in L_{\mathcal{S}}$, where $f(\alpha)$ denotes the image sequence of α under f.

We now characterize continuous mappings in Fréchet spaces using sequential convergence structures and obtain a generalization of Theorem 3.1 above.

THEOREM 3.2. Let $L_X \in SC[X]$ and $L_Y \in SC[Y]$. A mapping $f: (X, C_{L_X}) \to (Y, C_{L_Y})$ is continuous if and only if for each $(\alpha, x) \in L_X$, $(f(\alpha), f(x)) \in \mathcal{L}(C_{L_Y})$.

Proof Let $(\alpha, x) \in L_X$. Then, by Theorem 2.3(1), $(\alpha, x) \in \mathcal{L}(C_{L_X})$. Since f is continuous at x, $f^{-1}(V)$ is a neighborhood of x in X for each neighborhood V of f(x) in Y. So, by Lemma 2.2, α is eventually in $f^{-1}(V)$. It follows that $f(\alpha)$ is also eventually in V. Thus, we have $(f(\alpha), f(x)) \in \mathcal{L}(C_{L_Y})$.

Conversely, suppose that there is a closed subset F of Y with $f^{-1}(F)$ is not closed in X, where $f^{-1}(F)$ denotes the inverse image of F under f. Then $C_{L_X}(f^{-1}(F)) \supseteq f^{-1}(F)$ and so there is an element x in $C_{L_X}(f^{-1}(F)) \setminus f^{-1}(F)$. It follows that $(\alpha, x) \in L_X$ for some $\alpha \in S(f^{-1}(F))$, and hence $(f(\alpha), f(x)) \in \mathcal{L}(C_{L_Y})$ by hypothesis. Since $(f(\alpha), f(x)) \in \mathcal{L}(C_{L_Y})$ and $f(\alpha) \in S(f(X) \cap F) \subset S(F)$, we have $f(x) \in C_{\mathcal{L}}(C_{L_Y})(F)$ According to Theorem 2.3(2), $f(x) \in C_{L_Y}(F)$. By closedness of F, $f(x) \in F$ and thus we have $x \in f^{-1}(F)$, a contradiction. \square

COROLLARY 3.3. Let (X, \mathfrak{T}) and (Y, \mathcal{S}) be two Fréchet spaces and let $L_X \in SC[X]$ with $L_{\mathfrak{T}} = \mathcal{L}(C_{L_X})$. A mapping $f : (X, \mathfrak{T}) \to (Y, \mathcal{S})$ is continuous if and only if for each $(\alpha, x) \in L_X$, $(f(\alpha), f(x)) \in L_S$.

Proof. It follows immediately from Theorem 3.2. \Box

By Corollary 2.4(2) and Corollary 3.3, we also obtain the following corollary.

COROLLARY 3.4. Let (X, \mathfrak{F}) and (Y, \mathcal{S}) be two Fréchet spaces. A mapping $f : (X, \mathfrak{F}) \to (Y, \mathcal{S})$ is continuous if and only if for each $(\alpha, x) \in L_{\mathfrak{F}}, (f(\alpha), f(x)) \in L_{\mathfrak{F}}.$

Note that Theorem 3.1 follows directly from Corollary 3.4. We thus obtain by Corollary 3.3 a convenient method to check a mapping in Fréchet spaces is whether continuous or not.

EXAMPLE. Let f be a real-valued mapping defined on a subspace X of the real line \mathbb{R} with the usual topology and $L_X = \{((x), x) | x \in X\} \cup \{(\alpha, x) \in S(X) \times X | \alpha \text{ converges to } x \text{ in } X \text{ and } \alpha \text{ is either strictly in$ $creasing or strictly decreasing}\}$. Then it is easy to check that $L_X \in SC[X]$ and moreover (X, C_{L_X}) is precisely equal to the space X itself. By Corollary 3.3, we see that f is continuous if and only if for each $(\alpha, x) \in L_X, f(\alpha)$ converges to f(x) in \mathbb{R} .

References

- 1. A. V. Arhangel'skil, Some types of factor mappings and the relations between classes of topological spaces, Soviet Math Dokl. 4 (1963), 1726-1729.
- S. P. Franklin, Spaces in which sequences suffice, Fund Math. 57 (1965), 108-115.
- 3 _____, Spaces in which sequences suffice II, Fund. Math 61 (1967), 51-56
- 4 J. Gerlits and Zs. Nagy, Some properties of C(X), I, Topology and its Appl. 14 (1982), 151-161.
- 5. G Gruenhage, Infinite games and generalizations of first-countable spaces, Gen. Topology and its Appl 6 (1976), 339-352
- 6 W C Hong, Sequential convergence spaces, Comm Korean Math. Soc 7 (1992), 209-212.
- 7. T Nogura and A Shibakov, Sequential order of product spaces, Topology and its Appl. 65 (1995), 271-285
- 8 P J Nyikos, Metrizability and the Fréchet-Urysohn property in topological groups, Proc Amer. Math Soc. 83 (1981), 793-801

Department of Mathematics Education Pusan national University Pusan ,609-735, Korea