ON GENERALIZED HAMMING WEIGHTS OF CYCLIC LINEAR CODES GENERATED BY A WEIGHT 2 CODEWORD

Seon Jeong Kim and Mi Ja Yoo

1. Introduction and Preliminaries

Let F be a field with two elements. A binary code is simply a linear subspace C of F^{n}. The elements of a code are called codewords, the integer n is called the length of the code. An $[n, k]$-code means the code of length n, and of dimension k. The weight $w(v)$ of a codeword $v=\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ is defined by $w(v)=\operatorname{card}\left\{2 \mid v_{1} \neq 0\right\}$. The weight $w(V)$ of a subcode V of a code C is defined by $w(V)=$ card $\left\{\imath \mid v_{1} \neq 0\right.$ for some $\left.v \in V\right\}$. In [W], Wei introduced the generalized Hamming weights which are defined as $d_{r}(C)=\min \{w(V) \mid$ V is an r-dimensional sulspace of $C\}$, for $1 \leq r \leq \operatorname{dim} C$. Also it has been shown in [W] that the weight hierarchy of a linear code completely characterizes the performance of the code on a type II wire-tap channel. Here $d_{1}(C)$ is just the minimum distance of C which is one of important parameters of a code C.

A code C is said to be cyclic if $\left(v_{2}, v_{3}, \cdots, v_{n}, v_{1}\right) \in C$ for every $\left(v_{1}, v_{2}, \cdots, v_{n}\right) \in C$. A cyclic code C is said to be generated by a codeword v if C is the smallest cyclic code containing v. In this paper, we find the generalized Hamming weights of a cyclic code C which is generated by single codeword of weight 2 .

The following are well-known facts on the generalized Hamming weights.

[^0]Tifeorem 1.1 (Monotonicity) [W]. Let C be an $[n, k]$-code, then

$$
1 \leq d_{1}(C)<d_{2}(C)<\cdots<d_{k}(C) \leq n .
$$

Theorem 1.2 (Duality) [W]. Let C be an $[n, k]$-code and C^{\perp} be the dual code. Then
$\left\{d_{r}(C) \mid 1 \leq r \leq k\right\}=\{1,2, \cdots, n\}-\left\{n+1-d_{r}\left(C^{\perp}\right) \mid 1 \leq r \leq n-k\right\}$.
The author would like to thank the referee for his/her comments and corrections to the previous version of this paper.

2. Main Results

Recall that there is a natural vector space homomorphism

$$
\phi: F[x] /\left(x^{n}-1\right) \longrightarrow F^{n}
$$

defined by

$$
\phi\left(a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+\left(x^{n}-1\right\}\right)=\left\{a_{0}, a_{1}, \cdots, a_{n-1}\right),
$$

and there is a one-to-one correspondence induced by ϕ between the set of ideals of $F[x] /\left(x^{n}-1\right)$ and the set of cyclic codes in F^{n}. (See [L] for more detail.) Thus the cyclic code generated by a codeword $\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)$ corresponds to the ideal in $F[x] /\left(x^{n}-1\right)$ generated by $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}+\left(x^{n}-1\right)$. This ideal is also generated by the coset whose representative element is the greatest common divisor of $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}$ and $x^{n}-1$. Note that $x^{n}-1=x^{n}+1$ since we only deal with $F=\{0,1\}$.

Lemma 2.1. Let C be a cyclic code of length n generated by a codeword v of weight 2 Then it corresponds to the ideal in $F[x] /\left(x^{n}-\right.$ 1) generated by $1+x^{l}+\left(x^{n}-1\right)$ for some divisor l of the integer n.

Proof. By definition of cyclic code, we may assume that $v=\left(a_{0}, a_{1}\right.$, \cdots, a_{n-1}), where $a_{0}=1$ and $a_{m}=1$. By the above comment, C corresponds to the ideal of $F[x] /\left(x^{n}-1\right)$ generated by $1+x^{m}+\left(x^{n}-1\right)$, then this ideal is also generated by a coset whose representative is the
greatest common divisor of $1+x^{m}$ and $x^{n}-1$. Let $n=m q+r$ with $0 \leq r \leq m-1$ Since

$$
\begin{aligned}
x^{n}-1 & =x^{m q+r}-1 \\
& =\left(x^{m q}-1\right) x^{r}+\left(x^{r}-1\right)
\end{aligned}
$$

by Euclidean Algorithm, we see that $\operatorname{gcd}\left\{1+x^{m}, x^{n}-1\right\}=1+x^{l}$, where $l=\operatorname{gcd}\{m, n\}$. Thus the proof is complete

A matrix G is called a generator matrix of a code C if its rows form a bass of C. It is a well-known fact that a generator matrix of the cyclic code corresponding to the ideal generated by the coset with representative element $1+x^{i}$, where l is a divisor of n, is

$$
\left(\begin{array}{ccccccccc}
1 & 0 & 0 & \ldots & 1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 & 1 & & 0 \\
& & & \ddots & & & & \ddots & \\
0 & 0 & 0 & \ldots & 1 & 0 & 0 & . & 1
\end{array}\right)
$$

where the second 1 is in the $l+1$ th place in the first row.
We use the following lemma to prove our man theorem.
Lemma 2.2 For $l, a \geq 2$, let G be a matrix
where I_{k} denotes the $k \times k$ identity matrix. Then for any ha -1 $(1 \leq h \leq l)$ columns of G, therc exist linearly independent ha-h columns

Proof. Let u_{2} denote the \imath-th column of G for $1 \leq \imath \leq l a$, and let B_{1} and B_{2} be the sets of columns of G such that

$$
\begin{aligned}
& B_{1}=\left\{u_{2} \mid 1 \leq \imath \leq l(a-1)\right\} \\
& B_{2}=\left\{u_{2} \mid l(a-1)+1 \leq \imath \leq l a\right\}
\end{aligned}
$$

Note that each vector in B_{1} has only one nonzero coordinate and that in B_{2} has exactly $a-1$ nonzero coordinates. Also note that the vectors in each $B_{\imath}, \imath=1,2$ are linearly independent.

First, we prove the case for $h=1$. Let $A=\left\{u_{2}, \mid 1 \leq j \leq a-1\right\}$ be a set with $a-1$ columns of G. If $A \cap B_{2}=\emptyset$, then the elements in A are linearly independent. Suppose that $A \cap B_{2} \neq \emptyset$, and let

$$
b_{1} u_{t_{1}}+b_{2} u_{z_{2}}+\cdots+b_{a-1} u_{v_{0-1}}=0, \quad b_{\imath} \in F,
$$

where $u_{t} \in B_{1}$ for $1 \leq j \leq t, u_{t} \in B_{2}$ for $t+1 \leq j \leq a-1$, and $t \leq a-2$. Then we get

$$
\begin{equation*}
b_{1} u_{r_{1}}+b_{2} u_{i_{2}}+\cdots+b_{t} u_{2_{t}}=b_{t+1} u_{t_{t+1}}+\cdots+b_{a-1} u_{t_{a-1}} . \tag{*}
\end{equation*}
$$

Suppose that both sides are not equal to 0 . Then the number of nonzero coordinates in the left side is less than or equal to $t \leq a-2$, and that in the right side is greater than or equal to $a-1$, which is a contradiction. Thus both sides are equal to 0 and hence all coefficients b_{3} are zero, or equivalently the elements in A are linearly independent.

Now we prove the cases for $2 \leq h \leq l$. Let $A=\left\{u_{i}, \mid 1 \leq j \leq h a-1\right\}$ be a set of columns in G, and A^{\prime} be the set of vectors in $A \cap B_{2}$ which are expressed as linear combinations of the vectors in $A \cap B_{1}$. Note that each vector in B_{2} are expressed as a linear combination of the vectors in B_{1};

$$
u_{l(a-1)+j}=\sum_{t=0}^{a-2} u_{j+t l} \quad \text { for } 1 \leq \jmath \leq l
$$

Since the sets $\left\{u_{y+n} \mid 0 \leq t \leq a-2\right\}$ for $1 \leq \jmath \leq l$ are disjoint, A^{\prime} has at most $\left[\frac{h_{a-1}}{l}\right] \leq h-1$ vectors in $A \cap B_{2}$. Hence

$$
\operatorname{card}\left(A-A^{\prime}\right) \geq h a-1-(h-1)=h a-h .
$$

Now we shall claim that any $h a-h$ vectors in $A-A^{\prime}$ are linearly independent. Let $u_{2_{1}}, u_{1_{2}}, \cdots, u_{i_{h a-h}}$ be elements in $A-A^{\prime}$ and suppose that

$$
b_{1} u_{i_{1}}+b_{2} u_{2_{2}}+\cdots+b_{h a-h} u_{t_{h a-h}}=0, \quad b_{2} \in F,
$$

where $u_{1}, \in B_{1}$ for $1 \leq \jmath \leq t, u_{2}, \in B_{2}$ for $t+1 \leq \jmath \leq h a-h$. For each \jmath with $t+1 \leq j \leq h a-h$, there is at least one nonzero coordinate of u, where the coordinates of the other vectors in A are 0 . Because such u_{3} can not be expressed as a linear combination of vectors in $A \cap B_{1}$ and all vectors in B_{2} has nonzero coordinates at distinct places. Hence the above equation implies that $b_{j}=0$ for all $t+1 \leq j \leq h a-h$. Since all vectors in B_{1} are linearly independent, the other coefficients are also zero. Thus $u_{t_{1}}, u_{2_{2}}, \cdots, u_{i_{h-k}}$ are linearly independent, and we have proved the lemma.

Finally we prove the main theorem.
Theorem 2.3. Let C be a cyclic code of length n generated by weight 2 codeword ($a_{0}, a_{1}, \cdots, a_{n-1}$) with $a_{1}=a_{3}=1$. Then the dimension of C is $l(a-1)$ and the generalized Hamming weights are

$$
d_{r}(C)=r+\left\lceil\frac{r}{a-1}\right\rceil \text { for } 1 \leq r \leq I(a-1)
$$

where $l=\operatorname{gcd}\{j-\imath, n\}, a=\frac{n}{l}$.
Proof. As in the proof of Lenma 2.1, we may assume that $a_{0}=$ $a_{l}=1$. Hence a generator matrix of the cyclic code C is

$$
G=\left(\begin{array}{ccccccccc}
1 & 0 & \ldots & 0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 & 0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & & & & & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 0 & 1 & \ldots & 0 & 1
\end{array}\right)_{l(a-1) \times l a}
$$

where the second 1 is in the $l+1$ th place in the first row.
We perform the following elementary row operation on the matrix G;

$$
v_{\imath}^{\prime}=v_{\imath}+\left(v_{\imath+l}+v_{t+2 l}+v_{t+3 l}+\cdots\right)
$$

for each $\imath=1,2, \cdots, l(a-2)$, where v_{\imath} denotes the \imath-th row of G. Then
we obtain another generator matrix G^{\prime} whose rows are v_{i}^{\prime};

$$
G^{\prime}=\left(\begin{array}{c|c}
& \mid c \\
& I_{l} \\
I_{l(a-1)} & \vdots \\
& \mid \\
& I_{l} \\
& I_{l}
\end{array}\right)_{l(a-1) \times l a}
$$

Now we use induction on h to prove that for any $h, 0 \leq h \leq l-1$,

$$
d_{r}(C)=r+(h+1) \text { for } h(a-1)+1 \leq r \leq(h+1)(a-1) \text {, }
$$

which is equivalent to the theorem.
Let $h=0$. Since the dimension of the code is less than n, clearly the minimun distance $d_{1}(C) \geq 2$. On the other hand we see $w\left(v_{1}^{\prime}\right)=2$, hence $d_{1}(C)=2$. For $1<r \leq a-1$, we have

$$
w\left(D_{r}(1, l+1,2 l+1, \cdots,(r-1) l+1)\right)=r+1
$$

where the notation $D_{r}\left(i_{1}, \cdots, i_{r}\right)$ means r-dimensional subcode generated by the rows $v_{2_{1}}^{\prime}, \cdots, v_{2 r}^{\prime}$ of G^{\prime}. Hence $d_{r}(C) \leq r+1$. Using Theorem 1.1, we conclude that $d_{r}(C)=r+1$.

Assume, as an induction hypothesis, that the following holds;

$$
d_{r}(C)=r+(s+1) \text { for } s(a-1)+1 \leq r \leq(s+1)(a-1)
$$

For $r=(s+1)(a-1)+1$, by assumption, we have $d_{r-1}(C)=$ $(s+1) a$. So we have the inequality $d_{T}(C) \geq(s+1) a+1$, here we prove that the equality does not hold. If $d_{r}(C)=(s+1) a+1$, then there exists a subcode D of C such that $w(D)=(s+1) a+1$ and $\operatorname{dim}(D)=(s+1)(a-1)+1$.

By definition of $w(D)$, all vectors in D have zero coordinates at $l a-((s+1) a+1)=(l-s-1) a-1$ places, simultaneously. That is, the following inclusion holds;
$D \subset\left\{\left(c_{1}, c_{2}, \cdots, c_{l a}\right) \in C \mid c_{c_{1}}=0\right.$ for $\left.j=1,2, \cdots,(l-s-1) a-1\right\},(*)$
for fixed $c_{2},=0$ for $j=1,2, \cdots,(l-s-1) a-1$. Since the rows of G^{\prime} form a basis of C, every element of D is also expressed as a linear combination of them. Since
$a_{1} v_{1}^{\prime}+\cdots+a_{l(a-1)} v_{l(a-1)}^{\prime}=\left(a_{1} \cdots a_{l(a-1)}\right)\left(\begin{array}{c}v_{1}^{\prime} \\ \vdots \\ v_{l(a-1)}^{\prime}\end{array}\right)=\left(a \cdot u_{1}, \cdots, a \cdot u_{l a}\right)$,
where v_{i}^{\prime}, u_{i} are rows and columns of G^{\prime} respectively, and $a \cdot u_{i}$ means the usual scalar product of $a=\left(a_{1}, \cdots, a_{l(a-1)}\right)$ and u_{2}, the above inclusion (*) is equivalent to
$D \subset\left\{a_{1} v_{1}^{\prime}+\cdots+a_{l(a-1)} v_{l(a-1)}^{\prime} \mid a \cdot u_{2}=0\right.$ for $\left.\jmath=1,2, \cdots,(l-s-1) a-1\right\}$.
Hence we obtan
$\operatorname{dim} D$

$$
\begin{aligned}
& \leq \operatorname{dim}\left\{a_{1} v_{1}^{\prime}+\cdots+a_{l(a-1)} v_{l(a-1)}^{\prime} \mid a \cdot u_{\imath_{j}}=0 \text { for } j=1,2, \cdots,(l-s-1) a-1\right\} \\
& =\operatorname{dim}\left\{\left(a_{1}, \cdots, a_{l(a-1)}\right) \mid a \cdot u_{i_{j}}=0 \text { for } \jmath=1,2, \cdots,(l-s-1) a-1\right\} .
\end{aligned}
$$

By Lemma 2.2, the rank of the matrix $\left(u_{1_{1}}, \cdots, u_{2_{(1-z-1) a-1}}\right)$ is at least $(l-s-1) a-(l-s-1)$, using the dimension theorem in Linear Algebra, we have

$$
\begin{aligned}
\operatorname{dim} D & \leq l(a-1)-((l-s-1) a-(l-s-1)) \\
& =(s+1)(a-1),
\end{aligned}
$$

which contradicts the fact that $\operatorname{dim} D=(s+1)(a-1)+1$. Thus $d_{r}(C) \geq(s+1) a+2$.

On the other hand, since

$$
\begin{aligned}
& w\left(D_{r}(\{b l+c \mid 0 \leq b \leq a-2,1 \leq c \leq s+1\} \cup\{s+2\})\right) \\
& \quad=(s+1) a+2,
\end{aligned}
$$

we conclude that $d_{r}(C)=(s+1) a+2$.
For $r,(s+1) a-s<r \leq(s+2) a-(s+2)$, we have $w\left(D_{r}(\{b l+c\}\right.$ $0 \leq b \leq a-2,1 \leq c \leq s+1\} \cup\{(s+2)+b l \mid 0 \leq b \leq r+s-(s+1) a\}))$ noindent $=r+(s+2)$. Then, by Theorem 1.1, we have $d_{r}(C)=$ $r+(s+2)$. Thus the proof is complete.

References

[L] R F. Lax, Modern Algrbra and Discrete Structures, Harper Collins Publishers Inc, 1991.
[W] V K Wer, Generalized Hamming wezghts for hnear codes, IEEE Trans Inform. Theory 37 (1991), 1412-1418.

Department of Mathematics and Research Institute of Natural Science Gyeongsang National University
Chinju, 660-701, Korea
E-mall: skim@nongae.gsnu.ac.kr

[^0]: Recerved September 10,1996
 Partially supported by KOSEF-GARC and by the Basic Research Institute Program, Ministry of Education. 1995, Project No BSRI-95-1406

