ON GENERALIZED HAMMING WEIGHTS OF SOME CYCLIC LINEAR CODES

Seon Jeong Kim and Mi Ja Yoo

1. Introduction and Preliminaries

Let F_{2} be a finite field with two elements, and F_{2}^{n} be the set of all n-tuples of elements in F_{2}. A binary linear code of length n means a subspace of F_{2}^{n}. If the binary linear code has dmension k as a subspace of $F_{2}^{\prime n}$, then it is referred to as an $[n, k]$ code orel F_{2}. A linear code C of length n is called cyclic if whenever ($a_{1}, a_{2}, \cdots, a_{n}$) is an element of C, so is ($\left.a_{n}, a_{1}, a_{2}, \cdots, a_{n-1}\right)$. The dual code C^{\perp} of a linear code C means the subspace

$$
C^{\perp}=\left\{x \in F_{2}^{n 2} \mid x \cdot c=0 \text { for all } c \in C\right\},
$$

where $x \cdot c=\left(x_{3}, x_{2}, \cdots, x_{n}\right) \cdot\left(c_{1}, c_{2}, \cdots, c_{n}\right)=x_{1} c_{1}+x_{2} c_{2}+\cdots+x_{n} c_{n}$.
In [W], Wei introduced the notion of generalized Hamming weights and weight hierarchy for a linear code, which has been motivated by several applications in cryptography. Let C be an $[n, k]$ code. Let $\chi(C)=\left\{\imath \mid x_{2} \neq 0\right.$ for some $\left.\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in C\right\}$. The r th generalized Hamming weight of C is then defined as

$$
d_{r}(C)=\min \{|\chi(D)|: D \text { is an } r \text {-dimensional subcode of } C\} .
$$

The weight hierarchy of C means the set of generalized Hamming weights $\left\{d_{r}(C) \mid 1 \leq r \leq k\right\}$. Obviously, $d_{1}(C)$ is just the minimum Hamming weight or minimum Hamming distance of the code.

In this paper, we find the generalized Hamming weights of some binary cyclic codes. Consider a natural vector space isomorphism

$$
F_{2}^{n} \longrightarrow F_{2}[x] /\left(x^{n}-1\right)
$$

[^0]$$
\left(a_{0}, a_{1}, \cdots, a_{n-1}\right) \mapsto a_{0}+a_{1} \bar{x}+\cdots+a_{n-1} \bar{x}^{n-1}
$$
where \bar{x} is a coset $x+\left(x^{n}-1\right)$. Using this map, we obtain the following theorem.

Theorem $1.1[\mathrm{~L}]$. There is an one to one correspondence between cyclic linear codes of length n and the ideals of $F_{2}[x] /\left(x^{n}-1\right)$. Moreover, there is an one to one correspondence between cyclic codes and the factors of $x^{n}-1$.

Thus each cyclic code C of length n corresponds to the unique polynomial $g(x)$, a divisor of $x^{n}-1$. We call this polynomial $g(x)$ the generator polynomial of the cyclic code C. More precisely, if $g(x)=a_{0}+a_{1} x+\cdots+a_{l-1} x^{l-1}+x^{l}$, then the corresponding cyclic code is generated by the rows of the matrix

$$
\left(\begin{array}{cccccccccc}
a_{0} & a_{1} & a_{2} & \ldots & 1 & 0 & 0 & 0 & \ldots & 0 \\
0 & a_{0} & a_{1} & \ldots & a_{l-1} & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & a_{0} & \ldots & a_{l-2} & a_{l-1} & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{0} & a_{1} & a_{2} & a_{3} & \ldots & 1
\end{array}\right)
$$

For such $g(x)$, let $x^{n}-1=g(x) h(x)$. We call $h(x)$ the parity check polynomial of the cyclic code C. Let $h(x)=h_{0}+h_{1} x+\cdots+$ $h_{n-l-1} x^{n-l-1}+x^{n-l}$. Then the parity check matrix of the cyclic code C is

$$
\left(\begin{array}{cccccccccc}
1 & h_{n-l-1} & h_{n-l-2} & \ldots & h_{0} & 0 & 0 & 0 & \ldots & 0 \\
0 & 1 & h_{n-l-1} & \ldots & h_{1} & h_{0} & 0 & \ldots 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & h_{2} & \breve{h}_{1} & h_{0} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 & h_{n-l-1} & h_{n-l-2} & h_{n-l-3} & \ldots & h_{0}
\end{array}\right) .
$$

Note that this matrix is the generator matrix of the dual code C^{\perp} of C.

The following theorem is easy to prove.
THEOREM 1.2. Let C be a cyclic code of length n with the generator polynomial $g(x)=(x+1)^{l}, 0 \leq l<n$. Then
(1) $\operatorname{dim} C=n-l$.
(2) $\operatorname{dim} C^{\perp}=l$.
(3) If $h(x)=\left(x^{n}-1\right) / g(x)$, then the polynomial $x^{\operatorname{deg} h(x)} h(1 / x)$ is the generator polynomial of the dual code of a cyclic code with generator polynomial $g(x)$.

The following theorems are well-known basic tools used in the next section.

Theorem 1.3 (Monotonicity) [W]. Let C bean $[n, k]$ code, then

$$
1 \leq d_{1}(C)<d_{2}(C)<\cdots<d_{k}(C) \leq n
$$

Remark. When C is nondegenerate, i.e., there is no always-zero bit position, then $d_{k}(C)=n$.

Theorem 1.4 (Duality) [W]. Let C be an $[n, k]$ code and $C^{\perp} b e$ its dual code. Then

$$
\left\{d_{r}(C) \mid 1 \leq r \leq k\right\}=\{1,2, \cdots, n\}-\left\{n+1-d_{r}\left(C^{\perp}\right) \mid 1 \leq r \leq n-k\right\} .
$$

2. A cyclic code with the generator polynomial $g(x)=(1+$ $x)^{l}$

Let C be a cyclic code of length n with the generator polynomial $g(x)$. Recall that $g(x)$ is a divisor of $x^{n}-1$. In this section, we consider the case $g(x)=(1+x)^{l}$ for some $l \geq 0$.

Theorem 2.1. Let C be a cyclic $[n, k]$ code with $k<n$. Then $d_{1}(C) \geq 2$.

Proof. If $d_{1}(C)=1$, then there exists a codeword of weight 1 in C. Since C is cyclic, all vectors $(1,0,0, \cdots, 0),(0,1,0, \cdots, 0), \cdots$, $(0,0, \cdots, 0,1)$ are in C, and so $C=F_{2}^{n}$. This contradicts the assumption $k<n$.

Theorem 2.2. Let C be a binary cyclic code of length n and $g(x)$ be its generator polynomial. Then the following hold:
(1) If $g(x)=1$, then $d_{r}(C)=r$ for $1 \leq r \leq n$.
(2) If $g(x)=x+1$, then $d_{r}(C)=r+1$ for $1 \leq r \leq n-1$.
(3) If $g(x)=x^{n-1}+x^{n-2}+\cdots+x+1$, then $d_{1}(C)=n$.
$P_{\text {Toof. (1) and (3) are obvious. For (2), since } \operatorname{dim} C=n-1, d_{1}(C) \geq}$ 2 by Theorem 2.1. Now the result follows from Theorem 1.1.

For convenience, we use a notation, for each integer $r \geq 1$,

$$
\gamma_{r}(C)=\{(\underbrace{c, c, \cdots, c}_{r \text { times }}) \mid c \in C\} \text {. }
$$

Obviously, if C is $[n, k, d]$ code, then $\gamma_{r}(C)$ is au $[r n, k, r d]$ code. Using these notation, we can decompose cyclic codes into those with shorter length.

Theorem 2.3. Let C be a binary cyclic code with length $2^{2}, i \geq 1$ and $g(x)=(1+x)^{l}$ be the generator polynomial of C. The following hold:
(1) Ifl $\geq 2^{2-1}$, then $C=\gamma_{2}\left(C_{1}\right)$, where C_{1} is the cyclic code of length 2^{2-1} with the generator polynomial $(x+1)^{1-2^{2-1}}$.
(2) If $l<2^{2-1}$, then $C^{\perp}=\gamma_{2}\left(C_{2}\right)$, where C_{2} is the cyclic code of length 2^{2-1} with the generator polynomial $(x+1)^{2^{2-1}-1}$.
Proof. (1) Let $l=2^{2-1}+a, 0 \leq a<2^{2-1}$. Then

$$
\begin{aligned}
g(x) & =(1+x)^{I} \\
& =(1+x)^{a} \cdot\left(1+x^{2^{t-1}}\right) \\
& =(1+x)^{a}+(1+x)^{a} \cdot x^{2^{2-1}} .
\end{aligned}
$$

If we set C_{1} the cyclic code of length 2^{2-1} with the generator polynomial $(1+x)^{a}$, then, comparing the generator matrices of C and C_{1}, we obtain the desired result.
(2) By Theorem 1.2 , the generator polynomial of C^{\perp} is $x^{n-I}(1 / x+$ $1)^{n-l}=(1+x)^{n-1}$. Since $n-l>2^{\prime-1}$, we can use (1).

To use Theorem 2.3 effectively, we find new expression for natural numbers.

Theorem 2.4. For a given integer $\imath \geq 1$, any integer l satisfying $1 \leq l \leq 2^{2}-1$ can be uniquely expressed as the form

$$
l=2^{t-1}+a_{i-2} \cdot 2^{2-2}+\cdots+a_{1} \cdot 2+a_{0}
$$

where ($1, a_{2-2}, a_{2-3}, \cdots, a_{1}, a_{0}$) satisfies the condition
(*) there exists an integer $\alpha \geq 0$ such that $\left\{\begin{array}{l}a_{3}=1 \text { or }-1 \text { for } j \geq \alpha \\ a_{3}=0 \quad \text { for } j<\alpha .\end{array}\right.$
Proof. Note that we can express any number as the form

$$
b_{r} \cdot 2^{r}+b_{r-1} \cdot 2^{r-1}+\cdots b_{1} \cdot 2+b_{0}
$$

where each coefficient is 0 or 1 . If $b_{3}=1$ and $b_{3+1}=0$, then we can replace them by $b_{3}^{\prime}=-1$ and $b_{j+1}^{\prime}=1$, since $2^{3}=2^{3+1}-2^{3}$. Repeating this process, we obtain the desired expression. The uniqueness can be easily proved.

In terms of Theorem 2.4, for fixed interger $\imath \geq 1$, there is an one to one correspondence between the natural numbers less than 2^{2} and set of i-tuples ($1, a_{i-2}, a_{i-3}, \cdots, a_{1}, a_{0}$) satisfying the above condition (*). So we identify this \imath-tuple with l or with the cyclic code with the generator polynomial $g(x)=(1+x)^{t}$.

Theorem 2.5. With the same notation above, we have
(1) $d_{r}\left(1,1, a_{2-3}, \cdots, a_{1}, a_{0}\right)=2 \cdot d_{r}\left(1, a_{\imath-3}, \cdot \cdot, a_{1}, a_{0}\right)$ for $1 \leq r \leq$ $n-l$.
(2) $\left\{d_{r}\left(1,-1, a_{2-3}, \cdots, a_{1}, a_{0}\right) \mid 1 \leq r \leq n-l\right\}$
$=\left\{1,2, \cdots, 2^{2}\right\} \backslash\left\{2^{2}+1-d_{r}\left(1,1,-a_{2-3}, \cdots,-a_{1},-a_{0}\right) \mid 1 \leq\right.$
$\leq l\}$. $r \leq l\}$.
Proof. (1) If $l=2^{2-1}+1 \cdot 2^{2-2}+a_{2-3} \cdot 2^{2-3}+\cdots+a_{1} \cdot 2+a_{0}$, then clearly $l>2^{2-1}$. By Theorem $23 .(1)$, we obtain the equality. (2) If $l=2^{2-1}+(-1) \cdot 2^{2-2}+a_{2-3} \cdot 2^{i-3}+\cdots+a_{1} \cdot 2+a_{0}$, then the generator polynomial of the dual code is $l=2^{2-1}+1 \cdot 2^{2-2}-a_{2-3} \cdot 2^{2-3}-\cdots-$ $a_{1} \cdot 2-a_{0}$. So we get the equation by Theorem 1.4.

Example 2.6. Let C be a binary cyclic code with length 2^{2} and $g(x)=(1+x)^{l}$ be the generator polynomial of C. Then, using Theorem 2.5 several times, we get the following:
(1) If $l=2^{2-1}+2^{2-2}+\cdots+2+1$, then $d_{1}(C)=2^{2}$.
(2) If $l=2^{i-1}+2^{i-2}+\cdots+2^{\alpha}$ with $\alpha \geq 1$, then

$$
d_{r}(C)=r \cdot 2^{2-\alpha} \text { for } 1 \leq r \leq 2^{\alpha}
$$

(3) If $l=2^{2-1}+2^{2-2}+\cdots+2^{\alpha}-2^{\alpha-1}-2^{\alpha-2}-\cdots-2-1$ with $\alpha \geq 1$, then

$$
d_{r}(C)=(r+1) \cdot 2^{i-\alpha-1} \text { for } 1 \leq r \leq 2^{\alpha+1}-1
$$

(4) If $l=2^{2-1}+2^{2-2}+\cdots+2^{\alpha}-2^{\alpha-1}-2^{\alpha-2}-\cdots-2^{\beta}$ with $\alpha>\beta \geq 1$, then

$$
d_{r}(C)=\left(r+\left\lceil\frac{r}{2^{\alpha-\beta+1}-1}\right\rceil\right) 2^{2-\alpha-1} \text { for } 1 \leq r \leq 2^{\alpha+1}-2^{\beta},
$$

where $\lceil t\rceil$ means the integer part of t.
(5) If $l=2^{2-1}+2^{2-2}+\cdots+2^{\alpha}-2^{\alpha-1}-2^{\alpha-2}-\cdots-2^{\beta}+2^{\beta-1}+\cdots+2+1$ with $\alpha>\beta \geq 1$, then

$$
d_{r}(C)=\left\{\begin{array}{c}
\left(r+\left\lceil\frac{r}{2^{\alpha-\beta}-1}\right\rceil\right)^{2-\alpha-1} \text { for } 1 \leq r \leq\left(2^{\beta+1}-2\right)\left(2^{\alpha-\beta}-1\right) \\
\left(r+2^{\beta+1}-1\right) 2^{2-\alpha-1} \text { for }\left(2^{\beta+1}-2\right)\left(2^{\alpha-\beta}-1\right)+1 \leq \\
r \leq 2^{\alpha+1}-2^{\beta+1}+1
\end{array}\right.
$$

For a general integer $n \geq 1$, we have the theorem.
Theorem 2.7. Let $n=2^{2} \cdot m$ with $i \geq 0$ and odd interger $m \geq 1$. Let C be a binary cyclic code with length n and $g(x)=(1+x)^{l}$ with $1 \leq l \leq 2^{2}-1$ be the generator polynomial of C. Suppose that \bar{C} be a binary cyclic code with
length 2^{2} and $\bar{g}(x)$ be the generator polynomial of \bar{C}. Then $C^{\perp}=$ $\gamma_{m}(C)$ and hence $d_{r}\left(C^{\perp}\right)=m \cdot d_{r}(\bar{C})$ for $1 \leq r \leq l$.

Proof. The check polynomial $h(x)$ of C is

$$
\begin{aligned}
h(x)= & (1+x)^{2^{\prime}-l} \cdot\left(1+x+x^{2}+\cdots+x^{m-1}\right)^{2^{\prime}} \\
= & (1+x)^{2^{\prime}-l} \cdot\left(1+x^{2^{\prime}}+x^{2^{2}}+\cdots+x^{(m-1) 2^{\prime}}\right. \\
= & (1+x)^{2^{\prime}-1}+(1+x)^{2^{\prime}-l} \cdot x^{2^{\prime}}+(1+x)^{2^{2}-1} \cdot x^{2 \cdot 2^{\prime}} \\
& +\cdots+(1+x)^{2^{\prime}-l} \cdot x^{(m-1) 2^{\prime}} .
\end{aligned}
$$

Hence the generator polynomial of C^{\perp} is $x^{\text {deg } h(2)} h(1 / x)=h(x)$. Comparing their generator matrices, we obtain the result.

References

[L] R. F Lax, Modern Algrbra and Discrete Struciures, Harper Collins Publishers Inc, 1991
[W] V Ii Wei, Generalized Hamming wezghts for hnear codes, IEEE Trans Inform. Theory 37 (1991), 1412-1418.

Department of Mathematics and Research Institute of Natural Science
Gyeongsang National University
Chinju, 660-701, Korea
E-manl: skim@nongae.gsnu.ac.kr

[^0]: Received June 28,1996.
 Partially supported by KOSEF-GARC and by the Basic Research Instatute Program, Mmistry of Education, 1995, Project No BSRI-95-1406

