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Analytical Study of Delamination Buckling in Laminated Beams
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1. Introduction

Delamination in laminated structures is a
separation of adjoining layers at the interface.
Delamination growth may significantly influ-
ence the strength, stiffness, and stability of a
The

results from many sources, such as manufactur-

laminate. initiation of delamination

ing defects, deterioration of bonding materials,
The

behavior in laminated structures has received

or local impact damage. delamination
the attention of several investigators. Basi-
cally, most of the available analytical and nu-
merical solutions assumed an embedded delami-
nation before loading and no delamination

propagation.
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One of the first analytical delamination models
was developed by Chai.' He characterized the
delamination in homogeneous, isotropic plates
using a thinfilm model, and extended this ap-
proach to a general bending case which in-
cluded the bending of a thick base laminate.
Tracy and Pardoen’ studied the effect of de-
the

laminated beams, but their analytical solution

lamination on flexural stiffness of
did not include bending-extension coupling nor
delamination buckling. They tested specimens
manufactured with a delamination at the
midplane, and they concluded that the delami-
nation did not degrade much the stiffness of
the observed in

glulam-FRP beam tests (Kim?®), if the delami-

laminates. However, as
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nation was placed near the top surface of a
beam, delamination buckling is likely to occur.
Consequently, the stiffness of the beam would
be affected substantially. Currently, there are
no studies on the delamination phenomenon in
laminated beams under bending.

In this paper, an analytical model to predict
the response of a delaminated beam under
bending is presented. The investigation of the
critical loads and delamination behavior is the
major concern of this study. In the analytical
model, an initial delamination length at the
interface of the top layer and the base laminate
is assumed. Beyond the delamination length,
the rest of top layer remains bonded to the
compression face of a relatively thick laminate.
The delaminated beam is subjected to
four-point bending and the initial delamination
is symmetric about the midspan. The displace-
ment, rotation, and the axial force acting at
the delaminated layer are computed, based on
the assumed displacement functions which are
derived using boundary conditions and com-
patibility conditions. Also, explicit expressions
for critical buckling load and strain energy re-
lease rate are provided. Using the test data of
a fullsize laminated beam, the displacement
and critical loads predicted by this study are
compared with experimental values. A para-
metric study is carried out to investigate the
effect of laminate stiffness on the critical loads.
Strain energy release rate for various initial
delamination lengths are computed to find out
the trend of delamination growth in laminated
beams under bending. Finally, findings of this
study are summarized and recommendations

for future research are suggested.
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2. Derivation of Displacement Functions

Consider the beam shown in Fig. 1 subjected
to 4-point symmetric loading, where one half of
the beam is modeled using a shear-release at
midspan where shear is free but moment is
present. The beam is divided into three zones:
zone 1 contains no delamination: zone 2 is the
base laminate, or thicker lower portion of the
delaminated region: and zone 3 is the thin up-
per lamina that has undergone delamination.
The subscripts used in the derivation of the

theory correspond to these three zones.
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Fig. 1 Beam Configuration and Load
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Fig. 2 Coordinate System

The coordinate system and beam parameters
are shown in Fig. 2. For the simplification of
the problem of interest, we assume that a
single delamination is embedded before loading
and it is symmetric about the midspan. Also
we assume that mode I(opening mode) fracture
is the primary mechanism for delamination

growth, and that the thickness of a



delaminated lamina is small compared to that
of the laminated beam. The displacement

functions in all four segments are derived next.

(1) From the support to the loading point
(0<X1<Ll)

As the bending moment varies linearly in
this region, the displacement function can be

assumed as

wy(x) = axi+bxi+cx,+d (1)

Using the boundary condition at the support

and constitutive equation, we have

wi(x) = —-éQDTchxl (2
The coefficient ¢ will be determined in the

next section using compatibility conditions,

(2) From the loading point to the delamination
tip
(Li¢xL2)

As the bending moment is constant in this
region, the displacement function can be writ-

ten as

wy(x) = exi+frntg (3)

Using the constitutive relation and the
prescribed boundary conditions at the delami-

nation tip, é and 6, we obtain

L
Wu(xl) = Q—l_(_x% + 2L2x1) + Bxl + 5—L26
2D,
QL
4D, (4)
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The continuity condition of rotation at x,= L,

gives

QLI(2L, - L)
o= ez A

+
2D, o (5)

Then, Eq. (2) becomes

Q@ 3 QL.(2L,— L))
6D1“+[ 2D, +60]x (6)

wie(x) =

From the displacement continuity condition

at x= L,, we have

_ OLL WL 5

= Top 3D, L ™

(3) Delaminated region: segment 2(—%

{x«0)

Assuming a constant bending moment in this

region, the displacement function is given by

wz(xg) = hx§+1x2+j (8)

Using the prescribed boundary conditions at

the delamination tip, we have

wix,) = —Lidxﬁ +5+41, (9)

(4) Delaminated region: segment 3 (——%(X;{U)

The post-buckling deflection shape of a

column is given as

wy(x3) = Ksin(ax;) +Kycos(ax;) +Kyx;+ K,
(10)

where, a=+/P/D,. As the deformed shape is
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symmetric, we have K= K;=0. Using the com-
patibility of displacement & and rotation 6 at

the interface between segments 1 and 3, Eq.
(10) becomes

cos(ox;) —cosf
asinf

8+o (11)

wi(x;) =

Where, f=aL,/2. The displacement functions
expressed in terms of beam parameters and the
prescribed boundary conditions are used to
compute strain energy and strain energy re-

lease rate in a beam, as discussed next.

3. Critical Buckling Load and Delami-
nation Growth

Beam bending induces a strain distribution
that is linear through the thickness of the
beam. The linear strain distribution can be
represented by resultant moments for segments
1 and 2 and resultant axial force acting at seg-
ment 2, as shown in Fig. 3. From the moment
equilibrium condition at the delamination tip
(x=L,), we can write

M= M, + %» (12)

Using the moment-curvature relations of M,
and M,, and the second derivatives of (4) and

(9), we have

d2
M, = "Dl = QL
d Woy 2D,0
M, = —Dy—5 = - 13
2 deé Ld ( )

Using Eqs. (12) and (13), 6 can be expressed

as
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Fig. 3 Forces at Delamination Tip

9 =

—Pt) (14)

The compatibility condition of axial shorten-

ing of segments 2 and 3 is
—-Ld = —f (—) dx rH()—TL,, (15)

Then, we obtain

0= —i+\/9 +6(=—+=)P (16)
Ld ) {

Equating expressions (14) and (16), the relation
between P and Q is established as

_2pt 8D,
Q L, L.L,
3 98 1 ]
L. \/ I + 6P( —-) (17)



Using the displacement functions given in
Egs. (4), (6), (9), and (11), the strain energy
along the post-buckling path for each segment
is computed as follows. First, the bending en-

ergy for segment 1 is

Lz dzwl
1 Dj

_(L)? (L+2L0—3L,,) ,
a 12D, @ (18)

U,

The bending energy for segment 2 is

- le (dwz

—P,t)* (19)

16D2

and the membrane and bending energy for seg-

ment 3 is

2 dx?

chpLd PUOZ / . Dfl
vy + Ssin'p, (Ls + sin2f.4/ Pﬂ)

(20)

/,d
L &
v, = 1e.azt+1p, [ (S55ydx

The total potential energy can be written as

where, A, the displacement at a loading point

computed using Eq. (6), is

Y L+2L,—
A=0L + Q(Ll) (L6D2 o—3L4) (22)
1

The total potential energy along the
post-buckling path can be expressed in terms of

a single parameter (Q) as

X8 M 45 199614 128

_ 1 Li(2QL,—P.t)’
7= g D,

1 PcrL?l(zQLl-Pat)z
64 Di[1-cos(28.)]

[Lﬁ-sin(ZBn) \/g:: ]

+

chr d QLdLl
T4 4D, —(2QL,— P.t)
_ QZ(Ll)Z(L+2L0-3L4)
12D, (23)

Then, the critical buckling load (bifurcation
point) can be found as (Timoshenko and Gere’;
Ziegler,” Eq. (1.36), p.11)

oIl _
W =0 (24)

or

3 Pcr 3(2QL1 _Pcrl) D3 .
B eI (Lt y[—sin2f,
i Disin'f.L, (L, P. sin2f..)

— ¢ L+2L,—3L, 3L4 )Q -0 (25)
D,

At the bifurcation point, the load @ in Eq.
(17) can be substituted into Eq. (25). Then, P.,
is found by an iterative numerical method.
Then, substituting P, into Eq. (17), a critical
transverse load @, can be computed and it is
valid up to the critical stage. Note that in Eq.
(20), the load in the delaminated segment is
assumed to remain constant and equal to P,.
This is because of the virtually flat post-buck-
ling path, similar to that of an Euler column.

The strain energy release rate (G) is defined
as

aU,+U,+U,)

G= 21V PPy
(qLd (26)
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and using Egs. (13) through (20), the explicit

expression of G per unit width is

_ (L)@ (QL-PY

G

2bD, 8bD,
; —Pt) /[P, L
_ PcrLd(zQzL.l § 1) (2— 4|2 ) (27)
64bD3sinf., D; tanf.

The accuracy of the model developed in this
section is evaluated by correlating the analyti-
cal solutions with experimental results, as

presented next.
4. NUMERICAL EXAMPLE

The test data for glulam beams reinforced
with GFRP (Kim®) are used to validate the
analytical solution presented previously. The
beam configuration and average layer material
properties are shown in Fig. 4, and the beam
parameters are listed in Table 1. The
delaminated length (L,), which is unknown at
the time of the test, is a parameter needed to
carry out the computations with the equations
derived in the previous section. The
delaminated length is estimated using Lami-
nation Beam Theory (LBT, Barbero®) and
Euler’s column buckling formula. The critical

experimental load Q."=47.2KN was recorded
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Fig. 4 Laminated Beam Reinforced with GFRP
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when buckling of the delaminated layer was
observed during the experiment (see Fig. 5).

Using LBT, the stress in the delaminated layer

at buckling (bifurcation point) can be
computed using the known critical load Q. as
follows :
MEy;
O = —
D,
:?LIEO’i
== 28
D, (28)
= 82 (KN)
Table 1. Beam Parameters
Length(m) L=579, Ly=1.83

Ar=428.8, A3=20.1
D1=796, D;=7.03, D3=587

Axial Stiffness(MN m?)
Bending Stiffness(GN m?)

Thickness(cm) h=0.48, t=33.9
Width(cm) 5=10.15
120
i Deiamination bud(lfnq
~ )
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Displacement (c¢m)

Fig. 5 Load-Deflection Curve

Assuming that the delaminated layer
behaves like a fixed-fixed column, the approxi-
mate delamination length is computed from

Euler’s formula as

41)37!2
L — —————
= N onb (29)

= 0.16 (m)



Using Eqgs. (17) and (16), P and 6 can be
computed for a given Q. Then, the maximum

midspan deflection wsn, is given by Eq.(9) as

Wiae = & + %L, (30)

The internal axial force P, in the
delaminated lamina and the critical transverse
load Q. are related by Eq. (17). It is our
interest to predict @, which causes local buck-
ling of a delaminated sublaminate. In Fig. 6, P,,
and Q. are plotted for various delamination
lengths, where P, is computed from Eq. (27)
and Euler’s formula, and Q. is obtained from
Eq. (17). Euler’s formula and the results of Eq.
(27) provide nearly identical values for P,.
However, Euler’s formula can not by itself pro-
vide any information on the magnitude of the
transverse load (Q). Therefore, Eq. (17) must
be used. The experimental load-displacement
path of the glulam-GFRP beam is given in Fig.
5, and the experimental values and analytical

solutions are compared in Table 2. Compared
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Fig. 6 Critical Loads
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Table 2. Comparison of critical loads
Q-(KN) P,(KN)
Test This study Test This Study
47.2 48.5 61.9 61.4

with test results, the critical load Q. predicted
by this study is within 2.6% of the experimen-
tal value, and the predicted P, is within 1% of
the experimental P,. The experimental P, is
computed using the experimental strain at the
top surface measured with strain gages.

After the buckling fof a delaminated
sublaminate occurs, it ig/of interest to investi-
gate the growth of the delamination length; i.
e., whether or not the delamination will grow
or be arrested as function of the applied load.
For this purpose, the strain energy release rate
given in Eq. (27) is plotted for various initial
delamination lengths in Fig. 7. To interpret the
physical meaning of the curves, a critical strain
energy release rate (G,) is assumed as 87.6
(N/m). This value of G, is representative of
graphite-epoxy T300/976. When the transverse
load reaches a critical value (Q.=48.5KN for
the example considered in this study), the de-
lamination becomes unstable, and it grows

from the initial delamination length (L,=0.

1400 - Q4
© Qg
-~
£ 1080 )
~ ] /
Z VA
foital L 4= 016 m ol L 3= 0 25 m)
SR B eyt P = 292KN
Q- 485 KN Q.= 183 KN
/ il L g= 0.38 1]
350 P 103KN
Vi Q=8 1KN
G, -878 £ -
€ o . —_1- — —— - - —
e e e
o 25 %0 75

Fig. 7 Strain Energy Release Rate Curves
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16m) to a stable condition (L;=0.3m). Increas-
ing the load by a factor of 10% of Q., the de-
lamination length decreases slightly, which
means that no further delamination growth
occurs; i. e, the delamination growth is ar-
rested.

For an initial delamination length of 0.25m,
the flat zone of the curve moves down, but the
curve is still above the assumed G, value,
which indicates an unstable delamination
growth in the beam, leading to a stable con-
dition at the delamination length of around 0.
48m. However in this case, Q, decreases by
60% to a value of 18.3KN, when compared to
the previous case for L,=0.16m. For a further
increase of delamination length to 0.38m, the
flat zone of the curve moves below the assumed
G, value, and therefore, there is no delami-
nation growth. Compared to the initial case
(L;=0.16m), Q. in this case decreases by 80%
to a value of 8.1KN. From this observation, we
may infer that delamination growth in a thin
layer on the compression face of a beam is ar-
rested, while in laminates under axial load the
delamination growth can grow indefinitely. Ad-
ditional experimental data are needed to cor-

roborate this observation.

5. CONCLUSION

Most of the existing studies on delamination
in laminated structures deal with an axial
loading, irrespective of whether a thin-film
model or a general bending model is used. How-
ever,the existing models can not be directly ap-
plied to a transverse load case, in which the
major concern is to find a critical transverse

load. The main findings of this study are:
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(1) an explicit form to relate the transverse
load (@) with the internal axial force (P)
is established.

(2) the critical load (Q.) can be accurately
predicted as corroborated by experiment.

(3) a simulated delamination phenomenon
indicates an unstable delamination

growth after buckling of the delaminated
sublaminate, followed by arrested delami-
nation growth. This response is different
from the axial loading case, for which un-
bounded delamination growth is gener-
ally predicted.

To further verify the present model, it is de-
sirable to conduct wellcontrolled tests of
laminated beams with embedded predetermined
delamination lengths and instrumented with
transducers to detect onset of delamination

buckling and measure delamination growth.
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