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ABSTRACT

We show that the electrically coupled

Hindmarsh-Rose neuronal model exhibits

various patterns of phase locking at fixed

parameter value. Through the analysis of

the effective coupling, the system is shown

to be stabilized in one of these patterns

according to the initial conditions. This

corresponds to the parameter-tuning inde-

pendent mode-switching mechanism that

changes the electrical output of neuronal

systems. It is also presented how the stable

fixed points of the effective coupling which

characterize the phase locking patterns de-

pend on the external current.
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I. INTRODUCTION

It has been recently shown that diffusive

coupling generates the antiphase locking on

spiking level at weak coupling [1] and induces

dephasing of limit cycle oscillators which re-

sults in a new bursting behavior [2]. In this

paper we show that various phase locking pat-

terns may coexist in a neuronal system with

excitatory electrical coupling at fixed param-

eter. In other words, the system is ultimately

stabilized in one of those phase locking pat-

terns. This stabilized pattern, however, may be

reformed to a new phase locking pattern by a

slight perturbation at fixed parameter.

The activity changes of theoretical neu-

ronal systems have been generated by two

main mechanisms [3]. One is the parameter-

dependent mechanism by changing the elec-

trical activities of neurons, by changing the

synaptic coupling, etc. The other is parameter-

independent one via mode-switching with

fixed parameters, which can be manifested by

changing the transient inputs. The purpose

of this paper is to analyze quantitatively the

latter. We show that by changing the initial

conditions, which corresponds to changing

the transient inputs, the system is switched

from a locking mode to another with fixed

parameters.

We analyze quantitatively the phase lock-

ing patterns through the effective coupling [4]

of a limit cycle oscillator model. It is shown

that the model with diffusive coupling exhibit

dephasing of oscillators on the limit cycle at

weak coupling. The dephasing mechanism is

explained on the basis of the phase shift analy-

sis and of velocity divergence across the limit

cycle. At given values of parameters and cou-

pling strength it is shown that there exist var-

ious types of phase locking corresponding to

the stable fixed points of the effective cou-

pling. We also present the dependence of the

fixed points, therefore, the phase locking pat-

terns, on the external current. For the sake of

simplicity, we consider the coupled system of

two neurons in this paper. In section II, the

one neuron system is explained. The results

of this paper are presented in section III. The

summary and discussions are contained in sec-

tion IV.

II. THE MODEL

In this paper we study a system of
Hindmarsh-Rose (HR) neurons [5]. Even
though this model is not based on physiol-
ogy, it simulates some features observed in
neuronal bursting. The HR model has been
originally introduced to give a long interspike
interval and burst typical of real neurons. The
three variable HR model is given by

dX
dt
D Y�aX3CbX2� ZC I

dY
dt
D c�dX2�Y

dZ
dt
D r[s.X�˛/� Z] (1)

X is thought of as the membrane voltage of the

neuron, Y as the recovery variable, and Z as a

slow adaptation current. I is the uniform exter-
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Fig. 1. (a) Membrane voltage, X, (b) 3 (X, Y , Z) dimensional trajectory of Eq. (1). The circles in (a) match the points,

1-14, in (b). The solid arrows show the direction of the force due to the coupling. The difference of the magnitude

of the dotted arrows indicates the velocity divergence across the limit cycle, which results in the dephasing.

nal current. ˛ is the membrane voltage when

the neuron is in a stable fixed point of the null

clines d X
dt D 0, dY

dt D 0 for I D 0. Being a slow

variable, Z is considered as a parameter when

the fixed points are found. We’ll fix the param-

eters to the values a D 1:0, b D 3:0, c D 1:0,

dD5:0, sD4:0, and rD0:001.

A bursting time course for a single neuron

is shown in Fig. 1(a) for I D 2:7 for one pe-

riod of bursting. The bursting mechanism in

the mathematical neuronal systems has been

extensively studied in [5], [6]. We refer to [5]

for a detailed bursting mechanism of the HR

model. A brief explanation on the bursting

mechanism of HR model is as follows. As in

Fig. 1(a), each burst contains three spikes fol-

lowed by a quiescent state. The spikes are gen-

erated when the neuron is on the limit cycle

which surrounds an unstable fixed point. As

can be seen in Fig. 1(a), the spike interval be-

comes longer in a burst as the limit cycle tra-

jectory gets closer to the saddle point separa-

trix, and eventually the saddle-loop bifurcation

occurs. Then the firing ceases and the neu-

ron stays at the stable fixed point until a stable

limit cycle appears through a homoclinic con-

nection so that another burst starts. The 3 di-

mensional (X;Y , and Z) trajectories are shown

in Fig. 1(b).

The bursting oscillation is originated from

the evolution of the slow variable Z which

switches the dynamics of the system between

the steady state and the oscillatory state on the

limit cycle by changing the geometry of the

stable fixed point, saddle point, and the unsta-

ble fixed point. According to the detailed role
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of the slow and the fast variables, a classifi-

cation scheme for the bursting oscillation has

been proposed by Bertram et al [7].

III. RESULTS OF THE TWO
NEURON MODEL

The electrically coupled HR model is
described by (1) with an additional linear
voltage-coupling term, which is given by

dXi

dt
D Yi�aXi

3CbXi
2� ZiC I�K.Xi �Xj /

dYi

dt
D c�dX2

i �Yi

dZi

dt
D r[s.Xi �˛/� Zi]; (2)

where i; j D 1;2 and K denotes the coupling

strength.
In order to describe the phase dynamics of

the coupling we calculate the effective interac-
tions. Assuming the weak coupling, where we
fix KD0:01, the system may be approximated
as a phase model [4], where the phase � of a
neuron is defined as d�.X/

dt D 1. The effective
coupling 0. / is defined as

d 
dt
D 0. / D 1

2�

Z 2�

0
d�Z.�/ � P.�;  /: (3)

where  is the difference of the phase of the

two neurons,�1��2, and Z�P is the phase shift

defined as Z.�/ �P.�;  /D .gradX�/xDX0 .�/ �
P.�; /, where X0 is the point on the limit

cycle at phase �. Here, we adapted the ex-

tended notion of phase using the concept of

isochrons which are defined as a subset of do-

main converging to a point on the limit cycle.

P.�; /D P.X0 .�/; X0 .�C // describes the

rate of change of the state vector X of an os-

cillator due to the interaction with the other

at phase difference  . P.�;  / is the cou-

pling term in (2) expressed as a function of

the phases, which is considered as a small per-

turbation. The sensitivity function Z.�/ D
.gradX�/XDX0 .�/ gives the change of phase

along the limit cycle caused by the change of

X: we choose a point X0 on the limit cycle

and X not on the limit cycle but close to X0,

then measure the difference of the two phases

corresponding to X0 and X. The difference of

the phase devided by jX�X0j is the sensitivity

function.

To understand how the dephasing comes

out, we plot the phase shift, Z �P, as a function

of T D �
2� with  D 0:01� in Fig. 2(a). The

points, 1, 2, : : : , 14, in Fig. 2(a) correspond-

ing to the ones in Fig. 1(a) are the zeroes of the

phase shift. During the period of bursting, the

interaction causes the phase difference alter-

nately to increase (a positive value of Z � P) or

to decrease (a negative value of Z �P). One no-

tices the phase shift is almost zero when the os-

cillator is near the saddle point, i.e., the regions

1-2, 5-6, and 9-10, and at the stable fixed point,

14-1, where the neurons spend their most time

in one period of bursting. This implies that the

coupling between the neurons influences the

phase difference only for a relatively short du-

ration during the period of bursting. Averaging

Z � P over one period of butsting as shown in

(3), one obtains the positive value of the slope

at the origin of the antisymmetric part of the ef-
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Fig. 2. (a) The phase shift Z � P. T D �

2� ,  D 0:01�, (b) The antisymmetric part of the effective coupling. U1-4 are

unstable fixed points and S1-4 are stable fixed points. There is another pair of zero-crossings just to the right of

S2. Since the unstable and stable fixed points are located at almost same point, it is hardly possible to find the phase

locking pattern corresponding to the stable fixed point.

fective coupling in Fig. 2(b). This shows that

the diffusive coupling of (2) leads to dephasing

of the system.

This unexpected dephasing originates

from the deformation of the phase flow, i.e.,

the difference of phase velocity across the

limit cycle. As can be seen in Fig. 2(a),

dephasing occurs mostly in the regions 6-7

and 8-9. Since Z is a slow variable, we

consider the motion of the neuron on two

(X � Y) dimensional limit cycle for a clear

understanding of the dephasing. The two
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Fig. 3. Phase locking patterns. Each pattern corresponds to one of the stable fixed points in Fig. 2(b).

oscillators between 8 and 9 (or 6 and 7) exert

attractive force to each other in the X direction

due to the diffusive coupling, which can be

seen as the solid arrows in Fig. 1(b). The

leading oscillator is pushed inside the limit

cycle, so that it moves as the dotted arrow

inside the limit cycle. On the other hand, the

lagging oscillator is pushed toward the leading

one as the dotted arrow outside the limit cycle

in Fig. 1(b). The dragging effect due to the

diffusive coupling, however, is much smaller

than the one of the velocity difference across

the limit cycle, which can be seen as the

difference of the magnitude of the two dotted

arrows. This velocity difference across the

limit cycle is caused by the geometry of the

saddle point and its separatrix. Being closer to

the separatrix of the saddle point, the oscillator

outside the limit cycle is slower than the one

inside the limit cycle. This velocity difference

across the limit cycle results in the overall

dephasing of the system [2].

In Fig. 2(b) the points S1, S2, S3, and S4

correspond to the stable fixed points. To in-

vestigate the phase locking patterns, we con-



ETRI Journal, volume 18, number 3, October 1996 Seon Hee Park et al. 167

π

Fig. 4. Antisymmetric part of the effective coupling when (a) I D 2:74, (b) I D 2:8, (c) ID 2:84, and (d) I D 2:9. As I

gets larger, the number of stabel fixed points is reduced, so that the phase locking is less likely.

sider only the antisymmetric part of the effec-

tive coupling, therefore only the positive part

of the axis of phase difference in Fig. 2(b). The

system is eventually stabilized in one of these

points according to the initial conditions. The

unstable points U1, U2, U3, and U4 plays a

role of separatrix. For example, if the phase

difference of the two neurons is initially given

by the value between U2 and U3, it is gradu-

ally attracted to S2. Thus the system is phase

locked with the phase difference given by S2.

The reasoning for this is as follows. If the

phase difference of the two neurons is initially

given by a value between U2 and S2, the ef-

fective coupling is positive. This implies that

the phase difference gets larger by (3) until

it hits S2. By the same argument, the initial

phase difference at a value between S2 and U3

is attracted to S2. The initial phase difference

in the range of U1 (2, 3, 4) and U2 (3, 4, 1)

is gradually moved to S1 (2, 3, 4) where the

phase difference of the system is stabilized.

Various synchrony patterns can be seen in

Fig. 3, each corresponds to one of the stable

fixed points in Fig. 2(b). Obviously, these pat-

terns are not synchronized in the diffusively

coupled systems.

In Fig. 4 the dependence of the stable fixed

points on the external current I is presented.

The locations of fixed points move. As I gets
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strong, the number of phase locking patterns is

reduced and eventually the system is chaotic.

IV. SUMMARY AND
DISCUSSIONS

We have shown that the diffusively cou-

pled neuronal oscillators are not necessar-

ily synchronized but exhibit various rhythmic

phase locking patterns. Assuming weak cou-

pling, we have analyzed the effective coupling

on the limit cycle of coupled HR model with

two neurons. The model has been shown to ex-

hibit stable activity patterns coexisting at spe-

cific values of the parameters. The system is

eventually stabilized in one of the coexisting

patterns which correspond to one of the sta-

ble fixed points of the effective coupling ac-

cording to the initial conditions. The stabi-

lized pattern is reformed to another by a slight

transient input at fixed parmeter. This cor-

responds to the mode-switching mechanism

which changes the eletrical properties of the

system with fixed parameters.

The appearance of these out-of-phase lock-

ing patterns originates from the dephasing of

the coupling which is led by the velocity diver-

gence across the limit cycle. It is not, however,

always true that the diffusive coupling gener-

ates the dephasing. We have studied coupled

Hodgkin-Huxley model to see whether diffu-

sive coupling gives rise to dephasing between

oscillators or not. Despite of the existence of

a saddle point near the limit cycle, we were

not able to find the parameter value or the cou-

pling strength where dephasing occurs [8]. It

seems that the relation between the geometry

of the separatrix and the coupling direction (in

our case, X) is crucial to determine the phase

dynamics of the system.

As the external current increases for fixed

coupling constant, the number of spikes in

a burst grows and eventually the system be-

comes chaotic. As in the case of synaptic

coupling [9], the system shows chaotic syn-

chronization, where the fluctuations are cor-

related. This chaotic synchronization is an in-

termediate state to the wholly chaotic state as

the external current I increases. The form of

chaos arising from a model of bursting in ex-

citable membranes have been studied in [10].

The effects of the electrical coupling in a

model of the pyloric network of the stomato-

gastric ganglion in crustacea have been exten-

sively studied to understand how the coupling

regulates the firing frequency and burst dura-

tion of AB interneuron [11]. We performed a

numerical analysis of the electrically coupled

HR model with N neurons (unpublished, but

with the same numerical technique used in this

paper) to study the collective behavior of di-

ffusively coupled systems. In the weak cou-

pling regime, the system is split into clusters.

At some range of coupling constant and exter-

nal current values, the number of clusters are

shown to oscillate. These clustering pheno-

mena originate from the dephasing of the cou-

pling, whose quantitative analysis is left for

further study.
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The rhythemic activity of the oscillatory

networks such as the swimming and heart-

beat of invertebrates has been widely under-

stood via the post-inhibitory rebound mech-

anism [12]-[14]. Here, the alternating pat-

tern of activity is produced through the post-

inhibitory rebound between the inhibitory cou-

pled neurons or groups of neurons. Adjusting

the external current value at some fixed para-

meter or the coupling strength of (2), we

observed various synchrony patterns: the in

(anti)-phase locking patterns both on the spik-

ing and on the bursting levels. Our results,

therefore, suggest another route to generate the

rhythemic patterns, which, however, should be

supported by the physiological facts.
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