The Journal of Natural Science,
Pai Chai University, Korea
Volume 7: 27~35, 1995

da2lFE s ol&3 2-D DCT
Z

a4 VLSI ¢

Hxp
RS

An Efficient VLSI Implementation of the 2-D DCT
with the Algorithm Decomposition

Jae G, Jeong
Dept. of Physics, Pai Chai University

This paper introduces a VLSI (Very Large Scale Integrated Circuit) implementation of the 2-D Discrete
Cosine Transform (DCT) with an application to image and video coding. This implementation, which is based
upon a state space model, uses both algorithm and data partitioning to achieve high efficiency. With this
implementation, the amount of data transfers between the processing elements (PEs) are reduced and all
the data transfers are limitted to be local. This system accepts the input as a progressively scanned data
stream which reduces the hardware required for the input data control module. With proper ordering of
computations, a matrix transposition between two matrix by matrix multiplications, which is required in many
2-D DCT systems based upon a row-column decomposition, can be also removed. The new implementation
scheme makes it feasible to implement a single 2-D DCT VLSI chip which can be easily expanded for a
larger 2-D DCT by cascading these chips.
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[. INTRODUCTION

The 2-D discrete cosine transform
(DCT) [1] is important because of its
usage in image and video data compres-
sion [2]. For most practical image, the
DCT comes closest to the Karhunen-Loéve
transform in its energy compaction
properties as compared to other
transforms [1,3]. The DCT does not
possess the severe blocking artifact which
is often a problem with the DFT [3]. In
addition to this, the DCT can be general-
ized to the 2-D real separable unitary
tranform. Therefore, the efficient
implementation of this transform has
potential for being useful in many
applications.

During recent years, a lot of VLSI
implementations of the 2-D DCT have
been presented. In order to reduce the
number of required multiplications, the
realization of a 2-D DCT is accomplished
by the use of vector-radix type structures
which requires a fewer number of
multiplications [4,5]. However, the
vector-radix type approach often results
in an irregular architecture and requires
complicated routing which may require a
large silicon area and a long design time.

Recently, Sun et al. [6] presented a
single chip for the 16x16 2-D DCT based
upon a row-column decomposition [7].
Even though this chip can process data
with a sampling rate up to 14.3 MHz, it
1s still slow for many video processing
applications involving large frames such
as 1024x1024 pixels per frame or more.
Several of these chips can implement a
higher speed system by using data
partitioning methods and the inherent
parallel structure of 2-D DCT. However,
this chip can not be easily used for a
larger 2-D DCT implementation because
it uses an internal RAM for a matrix

transposition. In contrast, a 1-D DCT
chip can be easily cascaded for larger 1-D
DCT. It also can be used to implement a
high speed 2-D DCT, but an external
transposition RAM and several 1-D DCT
chips are required [8].

In this paper, | present a 2-D DCT
implementation scheme which can be
applied for the real-time video compres-
sion system. This scheme can be used to
implement a very high speed 2-D VLSI
DCT chip which can be expanded for a
larger 2-D DCT. I used an algorithm
decomposition technique which is
appropriate for a VLSI implementation of
the 2-D DCT. The implementation is
based on the data being partitioned in
blocks of M rows rather than MXM
rectangular blocks.

[. 2-D DCT ALGORITHM

For the 2-D DCT, the relationship
between an original image pixel u(m,n)
and a transformed image pixel v(m,n) is
expressed by [9]:

2 M- IM-1
vik, D= M%}g%c(k,m)c(l,n)u(m,n)
for 0<k<M-land 0<1<M-1 1

o i@pDT
where c(i,j)= e(i) cos oM

1 for otherwise

The above equation can be converted to
the following matrix form [10].

V = AUAT

where U is the original image segment
which is an M XM matrix, V is the
transformed image segment which is an
MXM matrix, and
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The matrix form as given by equation
(2) can be rewritten as:

V=A[AU"]" 4)

which means that one column of [AU"]

is computed from the one row of U and

one column of V is computed from one
column of [AU"]",

When we perform the 2-D DCT for an
image coding system, which is one of the
major applications, we perform the 2-D
DCT in the following way instead of
performing the 2-D DCT on the whole
image [2,3]: Divide a given image frame
into many segments, Transform each
segment independently, Apply any
compression and/or coding algorithm,
Transmit or store segments, Inverse
transform each segment independently,
and Combine all segments
frame. This approach makes the DCT and
inverse DCT computationally efficient in
terms of storage and processing speed
[2,11].

Many previously developed 2-D DCT

into one

implementations are based on the input
data being an MxM block. Therefore, at
least M-1 rows have to be stored before
starting the transformation of the first
segment for a system with a progressively
scanned type input. The new implemen-
tation is based on the MXN data block
which is M rows of the input image
frame. With this modification,
reduce the latency time involved in the
data storage as well as simplify the input
controller hardware without increasing

we can

—

29

the computational complexity.

In deriving the new implementation
scheme, we first define the input image
frame (F) and output image frame (G) in
terms of the input image segment (U;)
and output image segment (V;) as

follows:
/Uo.o U,o Uyog o+ Uy, 0\
F=| Uy, u,, Uy,, -+ Uy, (5)
WUorr Uiny Usiy Uiy
Voo Vio Voo 0 Viao 1
G=| Vy, Vi Vop oo Vi, (6)
Lvo..m V;.;,x Vz.i-l VL~1.,I 1

The first M rows of G are obtained
from the first M rows of F. Let a matrix
with the first M rows of F be designated
as F;, a matrix with the second M rows
of F be designated as F,, and so on. The
matrix with the first M
designated as G;, a matrix with the
second M rows of G be designated as Gy,

rows of G be

and so on. Then G, can be expressed as
follows:

{[AUOAO AT] [AUL() AT] e [AUL-L.D Arﬂ
= A[[Uyo A [U AT -+ [U,AT]
= A[[AUgo]" [AU, (] +++ [AUL, )]

= AY

(7)

where Y=[[AUO.o]T [AULO ]T [AUL—I.O]T] and
each [AU;]"
be expressed in a similar way. Using the
above representations, the 2-D DCT is
based upon the use of a MXN data block
rather than the use of an MXxM data
block.

The computation of G, can be divided
into two matrix by matrix multiplica
tions. The first matrix by matrix
multiplication is the computation of Y. In
this computation, one row of Fi is used
to compute one row of Y. That is, we can
compute y{m,n) for 0<m<N-1 as follows:

is a submatrix of Y. G, can
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ga(k,m)f(k,n) for 0<m<M-1
im0 i%]a(k. mfkM) for M<m<2M-1 (8)

> alk, imh ke L-DML0) for (-DM<m<LAL]
where (m)yis m modulus M, y(m-1,n-1) is
the m-th element of the n-th row of
matrix Y, a(k-1,m-1) is the k-th element
of the m-th row of the coefficient matrix
A which is defined in equation (3), and
f(k-1,n-1) is the k-th pixel of the n-th
row of input data.

The second matrix by matrix multipli-
cation is the computation of AY. In this
computation, one column of Y is required
to compute one column of G;. Then, G;
can be expressed as the following matrix:

Fak0yok EakOylk alk0vNLK
k= k0 k=)

G| Tak byl Eabkelylk  LaklyN-Lk O
k=0 k€ k0

%1a(k.l\f1-1)y{0,k) %‘a&,m-vyu,k) Falk MUyN-LK

k=

From equation (6), we know that each
input value is used M times. For instance
£(0,0) is used to compute y(0,0) through
y(m-1,0). Each PE can compute these
computations as a group. Thus, each PE
will not need to store or transfer this
input value after these computations.
However, each PE will need to store M
intermediate results until Y is computed.
We define these intermediate results as
state variables and designate them as
re(m,n) for 0<k<M-2. Then, the first
stage of computations for a pixel is as
follows:

if ((m)y = M-1) !
for k=0 to k=M-1 |
if ((m)y == 0)
e ((m) yyn)=a ({m)\, k) * f(m,n)
else

Ty ( (m)_\]- n)= a((m) Al k) *f(m,n)
+13 ((m) \~1, 1)
else |
for k=0 to k=M-1 |
y(m-(M-1)+k,n)=a (M-1,k) *f (m,n)
+1. (M-2, n)

We observe in equation (9) that one
column of Y is required to compute each
element of G,. However, each column of
Y requires more than one row of the
input. Therefore, the intermediate results
have to be stored in a buffer and they
have to be retrieved during the processing
of the next row of input data. Let’s
define these intermediate results as state
variables and designate them as qx(m,n).
Then, the computations for the second
stage for M rows are as follows:

i ((n)y # M-1) |
for k=0 to k=M-1 |
if ((n)y ==0)
qx (m,n)=a((n)y, k) * y(m,n)
else
gk (m,n)=a((n)\, k) *y(m.,n)
+q (m,n-1)
i
else |
for k=0 to k=M-1 |
g (m, n- (M-1)+k)=
aM-1,k) *y{m,n)
+qy (m, n-1)

If we assume that each processor in the
VLSI system can compute one multiplica-
tion and one addition in a single cycle,
each PE needs 2M cycles for the process-
ing of each pixel. It needs M cycles for
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the computation of the first stage and M
cycles for the computation of the second
stage. Since each row of an image frame
has N pixels, each PE needs a total of
2NM cycles to process one row of input.
Therefore, the throughput with a single
PE is 1/2M outputs per cycle.

. ALGORITHM
DECOMPOSITION

In this section, an asynchronous
architecture, which can provide high
performance only with the low speed data
communication channels, is presented.
The order of the computations and the
order in which the results are used are
the same for all of the state variables.
The state variables are the only data to
be transferred between PEs. Therefore all
data communications between PEs can be
implemented with FIFOs, which will
greatly reduce the handshaking
overhead. Also, the amount of data to be
transferred between the PEs is much
smaller than that is required for systolic
arrays whose PEs have to receive and
transmit at least one data item per cycle.
These advantages are obtained through
utilizing both data partitioning and
algorithm partitioning for the computa-
tional structure. With this approach, we
can achieve real-time processing with
relatively slow processors.

1. Data Partitioning

In this architecture, two levels of data
partitioning are used to implement a 2-D
DCT algorithm for image coding. We
define the first level data partition to be
one row of data and the second level data
partition to be M rows of data. The first
level data partitioning is possible through
the use of equation (8). According to this

equation, we need one row of data to
compute one row of Y and the computa-
tions for different rows are independent.
Therefore, processings of several rows can
be executed in parallel with an appropri-
ate number of processors. This can be
applied to all 2-D DCT implementations.

The second level data partitioning is
due to the characteristics of the image
coding system, that is, the 2-D DCT for
the first M rows of input is independent
from the 2-D DCT of the next M rows of
input. Therefore, several MxM 2-D DCTs
can be processed in parallel.

In this implementation, we assign one
second level data partition, which is M
rows of data, to a group of PEs which has
M PEs. Then, we assign one first level
data partition, which is one row of data,
to each PE in a group. Then, we obtain
an MxM DCT as shown in figure 1. In
this figure, PE 1 through PE M process
one second level data partition which is
M rows of input. PE M+1 through PE 2M
process a next second level data
partition, which is the next M rows of
input. Each PE processes one row of data
which is the first level data partition.

INPUT
f(m,n] f(m.n+1)]

f(m,n+M-1)l

PE1 |dS | PE2 a's PEM

] fpe ] —

f(matM)y  f(m,neM+1)] f(m,n+2M-1)]

PEM+1 | S | PEMs2 | 9S_ | PE2M

.

OUTPUT

Figure 1: An implementation of the 2-D DCT
with data partitioning

With only the first level of data
partitioning, we can utilize at most M
PEs because only M rows of data are



32 J. Natural Science, Pai Chai Univ, vol 7, 1995

available for the MxXM 2-D DCT. Since
2NM cycles are needed to process one row
of data (N pixels per row) by a single
PE, the throughput with M PEs is only
one half of the PE speed which is one
output for two cycles. Therefore, we can
achieve real-time processing only if the
PE speed is at least twice as fast as the
input data rate. However, we can achieve
higher throughput with the second level
of data partitioning with a large number
of relatively slow processors. If each
processor can compute one multiplication
and one addition in an input data
interval, we can achieve real-time
processing with two MxXM 2-D DCTs in
parallel as shown in figure 1. In this
figure, an M PE group represents one MxM
2-D DCT without the second level of data
partitioning. This is possible for the
image coding system because the 2-D
DCT for the M rows of data is indepen-
dent from the 2-D DCT for the next M
rows of data. Therefore, we can use
many relatively slow speed processors to
achieve real-time processing with two
levels of data partitioning.

2. Algorithm partitioning

A 2-D DCT can be computed in two
computational stages. By partitioning the
2-D DCT algorithm, we can replace a PE
shown In figure 1 with two PEs, each of
which performs one stage of the
computations. The result is shown in
figure 2 and the data path of the PE is
shown in figure 3. In figure 2, PEs in
the first row process the first stage of
the computations and the PEs in the
second row process the second stage of
computations.

Since the processing of one row of
input is independent from the processing
of any other row of input for the first
stage of computations, M rows can be

computed in parallel by different PEs. In
figure 3, PE 1 through PE M can operate
at the same time for different rows of
input. A PE does not need to transfer the
r state variables to other PEs because
these values are computed, stored, and
used internally. This will greatly reduce
the data transfers. Each PE processes an
input in M cycles. Therefore, M PEs can
process one pixel in a single cycle.

To obtain G;, we have to perform
another matrix multiplication G, = AY.
One column of Y is required to compute
each element of G;. However, the
elements of each column of Y are
distributed among the M PEs. Therefore,
y(k,0) and y(k,1), which belong to one
column, are in different PEs. Therefore,
each PE has to transmit intermediate
results to the next PE which has the
next element of the column of Y. PE M+1
through PE 2M have to compute the
second stage of computations.

For the second stage of computations,
each equation involves M multiplications
(see equation (9)). The first multiplica-
tion of the each equation requires one
element in the first row of Y which is the
first element in a column. The second
multiplication of the each equation
requires one element in the second row of
Y which is the second element in a
column. PE M+l has the first row of Y
and PE M+2 has the second row of Y.
Therefore, PE M+l computes the first
multiplication and passes the result to P
EM+2. Then, PE M+2 computes the second
multiplication, addition and passes the
result to PE M+3, and so on. And PE 2M
computes the output with one multiplica-
tion and one addition. The order of
transfers and the order of fetches for the
q state variables are the same.
Therefore, the transfer can be
implemented with FIFOs. When we
combine these two stages of computa-
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tions, we can achieve a real-time 2-D
DCT.

INPUT
fmm]  f(mnen)] f(m.neM-1)]
PE 1 PE 2 PEM
y(m.n) y(m.a+1) y(m.n+M-1)

's
PE M+1 —= PE M+2 F‘q ~+ PE2M

OUTPUT

Figure 2: An implementation of the 2-D DCT
with the data and algorithm partitioning

)
[ voButter |

rCoef. Bum

MULTIPLIER

Figure 3: A data path of the PE for the
system with the data and algorithm
partitioning

V. VLSI IMPLEMENTATION

We can implement a real-time 2-D DCT
with a single VLSI chip with the
implementation scheme introduced in this
paper. The implementation presented has
many good properties for VLSI implemen-
tation such as limited and local data
transfers and a modular structure which
reduces design time and cost. We do not
need matrix transposition between the
two matrix by matrix multiplications.

Figure 4 shows an example of VLSI
implementation of a 4x4 2-D DCT with
the algorithm partitioning. This VLSI
implementation can be extended to
implement a higher order 2-D DCT. For
instance, we can use four 4x4 2-D DCT
chips to implement a 16x16 2-D DCT
which has the same throughput as the 4x4
2-D DCT. This configuration is shown in
figure 5.

| INPUT
T

QUTPUT

Figure 4: A VLSI implementation of the 4x4
2-D DCT with the algorithm and data

partitioning
INPUT}
4X4 4X4 4X4 4X4
2-DDCT| |2-DDCT| |2-DDCT| | 2-DDCT
l 3 L 1 k] 11
QUTPU

Figure 5: An implementation of the 16x16 2-D
DCT with 4x4 DCTs

First, I analyses the data transfer. For
the second stage of computations, each
PE has to transfer state variables to the
next PE because g state variables
computed for one row are required for the
processing of the next row. One data
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transfer is needed for every second stage
of computations. For the first stage of
computations, no data transfers are
needed. For the system without the
algorithm partitioning, each PE computes
both stages of the algorithm. Therefore,
the average data transfer rate is one data
transfer for every two cycles. For the
system with the algorithm partitioning,
the data transfer rate between the PEs in
the second row is one data transfer per
cycle. It is twice as high as the rate for
the system without algorithm partition-
ing. In addition to this, we need
additional data transfers between the PE
in the first row and the PE in the second
row. This data rate is one data transfer
for every M cycles because each y is
computed in M cycles. Thus, this data
rate is relatively slow compared to the
input data rate.

Fach PE, in a system with algorithm
partitioning, has to compute M multipli-
cations and M additions to process one
pixel of input data because each PE has
to compute one of the two stages of the
algorithm. This means that we need M
PEs for each stage of the algorithm for
real-time processing. Therefore, the total
number of PEs for real-time processing is
2M. This is the same as the real-time
system without algorithm partitioning.
However, the use of algorithm partition-
ing reduces the number of PEs which
need to be connected to the input data
bus from M to 2M. This allows us to
reduce the input and output control
hardware, especially for the high order
real-time system which requires a large
number of PEs. This is important
because even though there are no bus
contention problems, we still may have
fan-in and fan-out limitations.

V. CONCLUSION

The implementation of the 2-D DCT
introduced in this paper are mainly based
upon the data partitioning. In the
presented 2-D DCT implementation based
on the state space model, one row of
data is defined as one data partition; the
first row of data is assigned to the first
PE, the second row of data is assigned to
the second PE, and so on. With this
implementation scheme, we can achieve
the followings:

» Speedup is virtually linear as we add
more PEs. Thus, real-time through-
put is possible with relatively slow
PEs.

« Throughput is adjustable because it
depends upon the number of PEs.

+ Asynchronous operations for all PEs
are possible. Thus, no global
synchronization is required.

* Only limited operation overhead for
asynchronous operation is achieved
through the use of block data
transfers and FIFOs.

* Only predetermined local data transfer
is used.

» Simple interconnection networks are
used, compared with the vector-radix
type architecture

+ Simple hardware is used, compared
with the system based on the row-
column decomposition technique.
There is no requirement for a matrix
transposition between stages and the
input data does not have to be
reformatted.

» It can be easily expanded for a higher
order 2-D DCT.

+ Very flexible implementation is possible
for a VLSI chip. The amount of
memory required is small.
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