The Interaction of Barley Acetolactate Synthase with 4,6-Dimethoxypyrimidine Inhibitors

  • Shim, Hee-Ok (Department of Biochemistry, Chungbuk National University) ;
  • Kim, Dae-Whang (Korea Research Institute of Chemical Technology) ;
  • Chang, Soo-Ik (Department of Biochemistry, Chungbuk National University) ;
  • Choi, Jung-Do (Department of Biochemistry, Chungbuk National University)
  • 투고 : 1995.06.19
  • 발행 : 1995.11.30

초록

Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine. ALS is the target enzyme for several classes of structually diverse herbicides. We have synthesized 4,6-dimethoxypyrimidine derivatives as ALS inhibitors, and their inhibitory activities on barley ALS were determined. $IC_{50}$ values for the derivatives are 0.2~200 ${\mu}m$. K11570, the most potent ALS inhibitor with $IC_{50}$ of 0.2 ${\mu}m$, showed mixed-type inhibition with respect to substrate pyruvate, and the progress curves for ALS inhibition by K11570 indicated that the amount of inhibition increased with time. Inhibition-competition experiments were carried out and indicated that three different classes of inhibitors, K11570, a sulfonylurea Ally, and leucine, bind to ALS in a mutually exclusive manner. Chemical modification of tryptophanyl and tyrosyl residues of ALS decreased the sensitivity of ALS to K11570, while cysteine modification did not affect the sensitivity. These results suggest that tryptophanyl and tyrosynyl residues are probably located at or near the inhibitor binding site.

키워드

참고문헌

  1. Korean Biochem. J. v.25 Ann, T.W.;Kim, D.W.;Choi, J.D.
  2. Science v.224 Chaleff, R.S.;Mauvis, C.J. https://doi.org/10.1126/science.224.4656.1443
  3. Science v.223 Chaleff, R.S.;Ray, T.B. https://doi.org/10.1126/science.223.4641.1148
  4. Korean Biochem. J. v.26 Choi, J.D.;Moon, Y.;Chang, S.I.;Chae, J.K.;Shin, J.H.
  5. Pest. Sci. v.29 Gelwick, B.C.;Subramanian, M.V.;Loney-Gallant, V.;Chandler, D.P. https://doi.org/10.1002/ps.2780290310
  6. Herbicide, Vol. III Kearney, P.C.;Kaufman, D.D.
  7. J. Biol. Chem. v.259 LaRossa, R.A.;Schloss, J.B.
  8. Korean Biochem. J. v.24 Lee, E.H.;Ahn, T.W.;Choi, J.D.
  9. EMBO J. v.7 Lee, K.Y.;Townsend, J.;Tepperman, J.;Black, M.;Chui, C.F.;Mazur, B.;Dunsmuir, P.;Bedbook, J.
  10. J. Biol. Chem. v.252 Penefsky, H.S.
  11. Plant Physiol. v.75 Ray, T.B. https://doi.org/10.1104/pp.75.3.827
  12. Plant. Physiol. v.86 Saxena, P.K.;King, J. https://doi.org/10.1104/pp.86.3.863
  13. Nature v.331 Schloss, J.V.;Ciskanick, L.M.;Vandyk, D.E. https://doi.org/10.1038/331360a0
  14. Biochemistry v.21 Schloss, J.V.;Cleland, W.W. https://doi.org/10.1021/bi00261a035
  15. Biochemistry v.24 Schloss, J.V.;VanDyk, K.E.;Vasta, J.F.;Katny, R.M.
  16. Enzyme Kinetics Segal, I.H.
  17. Plant Physiol. v.76 Shaner, K.L.;Anderson, P.C.;Smith, M.A.
  18. Plant Physiol. v.94 Subramanian, M.V.;Hung, H.Y.;Dias, J.M.;Miner, V.W.;Buttler, J.H.;Jachetta, J.J. https://doi.org/10.1104/pp.94.1.239
  19. Biochemistry Voet, K.;Voet, G.V.