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GEOMETRIC CONSIDERATION OF DUALITY
IN MULTIOBJECTIVE OPTIMIZATION
WITH SET FUNCTIONS

JUuN YUuLL LEE

1. Introduction.

In ordinary scalar convex optimization, the Lagrange multiplier the-
orem asserts the existence of a supporting hyperplane for the epigraph
of the primal map[5]. On the other hand, in multiobjective optimiza-
tion, the corresponding theorem [7, Theorem 2.3] implies the existence
of a conical variety (i.e., a translation of a cone) which supports the
epigraph of primal map. In this paper, we show that a similar assertion
is true for the multiobjective programming problem with set functions.

2. Multiobjective Programming Problem with Set Func-
tions.

Let (X, A, ) be a finite, atomless measure space and L'(X, A, 1)
be separable. Then,by considering characteristic function yg of Q in
A , we can embed A into L®(X, A, ¢). In this setting for 2, A € A,
and o € I = [0,1], there exists a sequence, called ¢« Morris sequence,

{T',} € A such that
xr, — ayxq + (1 — a)xa,

where - denotes the weak*- convergence of elements in L(X, A, pt)
6].

A subfamily S is said to be convez if for every (o, 2, A) € I XS xS
and every Morris sequence {I',,} associated with (o, Q,A) in A, there
exists a subsequence {T'y,} of {I'y} in §. In [1], if § C A is convex,
then the weak*~closure cl(8) of ys in L®(X, A, i) is the weak*-closed
convex hull of ys,and A={f € L®:0< f <1}.
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DEFINITION 2.1. Let S be a convex subfamily of A. Let I De a
convex cone of R". A set function H : § — R" is called IK-convex, if
given (a,Q1,Q,) € I xS xS and Morris-sequence {I',,} in A associated
with (a,Q1,82), there exists a subsequence {I',,, } of {T'y) in & such
that

limsup H(Ty,) Sk «H(Q1) + (1 — «)H(Qy),

k— o0
where lim sup is taken over each component.And ¥ <y y denotes
y—z €int(K)x < y denotes y —z € K \ {0}, and ¢ S y denotes
Yo €K,

DEFINITION 2.2. A set function H = (Hy,Hz, ... ,Hp): S — R"
is called weak*-continuous on § if for each f € cl(S) and for each
j=1,2,...,n, the sequence { H;(§2)} converges to the same limit for

all {Q) with xq, ~> f.

Now multiobjective programming problem with set functions can be
described as follows:

Minp F()
(P) subject to R € §
and G(Q) S 0,

which has been defined as the problem finding all feasible efficient D—
or properly efficient D—solution with respect to the pointed closed con-
vex cones D and @ of Euclidean spaces R? and R™ with nonempty inte-
riors, D° and Q°, respectively. That is, letting S’ = {2 € §: G(Q) Zq
0},we want to find 2* € §' such that
(F(S')— F(2%) N (~D) = {0}, 0if0¢D
or

c(p(F(S)+ D - F(Q*)))N(-D)={0},0if 0 ¢ D,
where the set p(S) = {ay: a > 0,y € S} is the projecting cone for a
set S C RP. We denote the set of efficient D-solutions by E(F(S'), D)
and the set of properly efficient D-solutions by PE(F(S'), D).

For the primal problem (P), we assume that FF': § - R?, G:8 —
R™ are D-convex, (Q—convex, respectively and weak*-continuous.
Under this assumptions we have the Lagrange multiplier theorem as in
usual multiobjective optimization problems. The set of p x m matrices

{M € RP*™. MQ C D} is denoted by M.
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THEOREM 2.3. (3] Let Q* be a properly efficient D—solution to
. the problem (P). If there is 2, € & such that G(Q,) <g 0, then there
exists M* € M such that

(1) F(Q*) € Minp{F(Q) + M*G() : Q@ € §}
(2) M*F(Q*) = 0.
In fact, F(Q*) € Minpc(F(Q) + M*G(Q): Q € 8).

The generalized Slater’s constraint qualification in Theorem 2.3 that
there exists (2, € § such that G(£2,) <g 0 is assumed in the sequel.
The primal problem (P) is embedded into a family of perturhed
problems:
Minp F(R)
(Py) subject to Q€&
and G(Q) Zq u.

We denote by S(u) the set {Q € §: G(R) g u}, and by Y (u) the set
F(5(u)).

DEFINITION 2.4. Perturbed (or primal) maps are defined on R™ by

W(u) = MinpF(S(u))
and W(u) = Minpel(F(S(u)))

The original problem (P) can be therefore regarded as determining
F~1{(W(0))N S. However, more satisfactory results are obtained if W
is used instead.

For each M € M, we define certain maps for (P) on M by

&(M) = Minp{F(Q) + MG(Q): Q € S}
(M) = Minp ({F(Q)+ MG(Q): Qe §})

The map @ and @ are called dual maps for (P).
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REMARK 2.5.
(1) MG(-): 8§ — RP is D—convex on §S.
(2) L(-,M) = F(:) + MG(-) is D—convex and w*—continuous.
(3) cl({F(S)+ MG(Q)}) is D-convex subset of R?
(4) For each M € M, we have

A({L(Q,M): Qe S} + D =2(M)+ D,

since cl({L(Q, M) : Q € §}) is compact and D—convex.
(5) For any u with S(u) # 0, [clY (v)] + D = W(u) + D.

The relationship between the primal map W and the dual map &
now can be established.

THEOREM 2.6. [4] For any M € M, the following equalities hold.

(M) = Minp U(W(u) + Mu) = Minp U (W(u) + Mu)
u€( u€E(e

where ( = {u € R™: S(u) #0} and(°={u € R™: {2 € S: G(N) <q
u} # 0}}.

COROLLARY 2.7. IfQ* is a properly efficient D-solution to the prob-
lem (P) with generalized Slater’s constraint qualification, then there
exists an M* € M such that

F(Q*) € ®(M*)N®(M*) C MinpllU,e(W(u) + M*u)].

proof. The proof is an immediate consequence of Theorems 2.3 and
2.6.

3. A Supporting Conical Variety.

All assumptions on F, G, D and @ of section 1 and 2 are inherited.
Furthermore, D is assumed to be a polyhedral convex cone. Then D
is the set of all solutions to some finite system of homegenous weak
linear inequalities. Hence there exists an s X p matrix U; such that

(1) D={yeRr:U,-y20}

where the row vectors of U; are generators of D°. Since D is pointed,
the s x p matrix U; has the full rank p. Here M = {M € R™*P ;
MQ C D}.
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DEFINITION 3.1. The D-epigraph of W is defined by
D-epi W = {(u,y) € R™ x R? : v € (,y € W(u) + D}.

Here W(u) = MinpY (u) and ¢ = {u : S(u) # @} were introduced
in section 2. The D—epigraph of W is defined similarly. Uunlike the
case of ordinary convex multiobjective optimization problem, D-epi W
may not be a closed convex set in R™ x R? . But we can see that
cl(D-epi W) is convex. The following lemma is similar to Lemma 2.4

7).

LEMMA 3.2. For a given M € M, the following conditions are
equivalent :
(i) F() + MG(Q) £p F(¥*) + MG(Q*) for any Q€ S ;
(ii) U1 F(Q) + U1 M G(Q) Zry Uy F(Q%) + Ui MG(Q*) for any Q € S.

Proof. Let Y = {F(Q2)+ MG(Q) : Q€ S}. Let y = F(Q)+ MG(Q)
and y* = F(Q*) 4+ MG(Q*). Then y* ¢ £(Y, D) if and only if there is a
y € Y such that y*-y € D\ {0}. This is so since Ner U; = {0}, y*—y €
D\ {0} if and only if Uy(y* —y) > 0. That is, Uy* > Uyy if and only
if Ury* ¢ E(Uyy, RY).

Now we consider the above lemma for D-epi W.

LEMMA 3.3. For M € M, the following are equivalent:
(i) For some (u*,y*) € D-epi W and all (u,y) € D-epi W,

y+ Mu £ y* + Mu*;
(ii) For some Q* € § and all Q € S,
F(Q)+ MG(Q) £ F(Q*) + MG(QY).

Proof. It is similar to that of [7, Lemma 2.5].

Following Nakayama [7], we define a supporting conical variety as
follows: For M € M, let U3 = MU; and define a cone K in R™ x R?
by

(2) K = {(u,y): U1y + Usu £ 0,u € R™,y € RP}.
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Let us define the lineality space of K, K |J(—K), by ((K). Since
the s x p matrix U; has the maximal rank p,

U(K) = {(u,y) : Ury + Usu = 0}
= {(u,y) : y + Uru = 0}.

Since row vectors of U; are generators of D°, MQ C D implies that
every row vector of My is in Q°.

DEFINITION 3.4. We say that K supports D-epi W at (u*,y*) if
K U [el(D-epi W) —(u*,y*)] C ((K). We call (u*,y*) the supporting
point of D-epi W. The set I = K + (u*,y*) is called a conical variety
of K. We also say that K supports D-epi W at (u*,y*).

The existence of a supporting conical variety of D-epi W at a prop-
erly efficient point is guaranteed by the following theorem.

THEOREM 3.5. Assume Slater’s constraint qualification on (P). If
Q* is a properly efficient D-solution to (P), then there exists a sup-
porting conical variety K of D-epi W at (G(*), F(€2¥)).

Proof. Since Q* is properly efficient, from Theorem 2.1, there exists
an M™ such that

(3) F(Q) + M*G(Q) £p F(Q*) + M*G(Q*) for all € S.
If (u,y) € D-epi W, then y € W(u) + D so that for some Qe
S(u),F(Q) £pyand G(W) Sg u. Let K = {(u,y) : U1y + U1 M*u <
0}, where U; is given in (1). Then from (3) and F(Q') + M*G(Y) £p
y + M*u, we have

y+ M*u &p F(2*) + M*G(Q*).
Therefore, by Lemma 3.2,

(4) Ui(y — F(Q2")) + Ua(u — G(27)) £ 0.

Since (u,y) € D-epi W was arbitrary, (4) holds for all (u,y) € D-epi
W. Then, equivalently, K supports D-epi W at (G(Q2*), F({2*)).
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We consider a relationship between a conical variety and supporting
hyperplanes. First we define several kinds of half-spaces associated
with a hyperplane. Let H(A,u : r) be a hyperplane in R™ x R? with
the normal (A, ) such that

HMp:r)={(v,y) ER™ x R? :< p,y >+ < A\, u > —r = 0}.

Associated with the hyperplane H(A, i : r), half-spaces are defined as
follows :

HYtOu:r)={(u,y) E R™" x R? :< p,y >+ < \,u > —r > 0}

HiAp:r)={(v,y) E A" x RP :< py >+ < Au>—r >0}

Similarly, H_ and H? are defined by replacing > (respectively , =)
with < (respectively, =).

LEMMA 3.6. [7,Lemma 2.6] The lineality space of the cone I\ de-
fined in (2) with Uy = UM is included in the hyperplane H(\, i : 0)
if and only if the matrix satisfies My = M.

Let H(A, i) denote the supporting hyperplane [8, pp.99-100] for D-
epi W with the inner normal (A, g), that is , H(A, pu) = H(A p : 7),
where 7 = sup{r: H(A\,pu: r) D D-epi W}.

LeMMA 3.7. [7, Lemma 2.7] For any supporting hyperplane H(\, jt)
for D-epi W at some (u,y) € D-epi W, we have that A\ € Q° and
p e D°.

The next two theorems clarify the relationship between supporting
hyperplanes and supporting conical varieties. Note that similar results
of Nakayama [7] are not applied directly because the D-epi W is not
guaranteed to be convex in the programming problem with set func-
tions. Thus we assume more restriction on the perturbed feasible set
{2 e §:G(NN) =¢ u} in the second theorem.

THEOREM 3.8. Let H(A,u) be the supporting hyperplane for D —
epiW with supporting point (u*,y*). Assume that p is in D°. Let I
be a cone defined in (9) for some M € M, and let ((IV) be the linear
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variety of (( () passing through (u*,y*). If O(K) is included in H(\, ),
then K supports D-epi W at (u*,y*).

Proof. It is similar to that of [7, Lemma 2.8]. Conversely, given
a conical variety of a cone K, we have a supporting hyperplane of

D —epiW.

THEOREM 3.9. Assume that (° = ( in the problem (P). If some
conical variety IV of a cone I supports D-epi W at (u*,y*), then there
exists a hyperplane H(\ p : r) with u # 0 supporting D-epi W at
(u*,y™) such that

{K)C H(A\p:r).

Proof. Suppose that K = {(u,y) € R™ x RP : Uy + UyMu < 0} for
some M and that its conical variety K supports D-epi W, at (u*,y*).
Then Uy(y — y*) + UtM(u — u*) £ 0 for all (u,y) € D-epi W, or
y+ Mu £p y*+ Mu* for all (v,y) € D-epi W. Note that

{Uyy + Ui Mu: (u,y) € D-epi W}

(5) C {U1y+UiMu : (u,y) € D-epi W}

where W (1) = Minpcl(F(S(u))) and S(u) = {Q € § : G(Q) Zq u}.
Since (° is convex and W is D-convex, since W is a D-convex point
-to-set map on the convex set (°, it follows that the set defined in (5)
is a convex set. Using Lemma 3.7 for D-epi W, we obtain the result.
The rest of the proof is similar to that of [7, Lemma 2.8].
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