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THE CHOQUET ¢-INTEGRAL WITH RESPECT
TO NON-MONOTONIC FUZZY ®-MEASURES

LEE—-CHAE JANG AND JOONG-SUNG KWON

1. Introduction

In T. Murofushi , M. Sugeno and M.Machida ([1],(2],[3]), L.M. De
Campos and M. Jorge Bolanos[4], they discussed some properties of the
Choquet integral with respect to non-monotonic fuzzy measures. Fur-
thermore, T.Muroshi, M.Sugeno and M.Machida[5] investigated the
Choquet integral with respect to non-monotonic fuzzy measures of
bounded variation. In addition, L.Jang and J. Kwon [6] studied some
properties of non-monotonic fuzzy measures of ®-bounded variation.

In this paper, we introduce the concept of non-monotonic fuzzy
measures of ®-bounded variation, where ® = {¢,} is a sequence of
increasing convex functions, defined on the nonnegative real numbers,
such that ¢,(0) =0 and ¢,(z) >0forz >0and n=1,2,---. We say
that ® is a ®*-sequence if and only if ¢n41(z) < ¢n(z) for all n and z
, and a ®-sequence if in addition ), ¢,(z) diverges for z > 0. These
definitions were introduced in M. Schramn [7]. Throughout this paper
we assume that (X, F) is a measurable space.

In section 2, we will define a non-monotonic fuzzy ®-measure and
the Choquet ®-integral. In section 3, we discuss some properties of the
Choquet ®-integral with respect to non-monotonic fuzzy ®-measures.
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2. Definitions and Preliminaries.

The fuzzy measure and fuzzy integral, defined on a classical o-
algebra, were introduced by M. Sugeno [8].

DEFINITION 2.1 ([5],[6]). A fuzzy measure on (X,F) is a real-
valued set function \ : F — R7 satisfying
(i) M¢)=0
(ii) A(A) < A(B) whenever A C B and A,B € F where Rt = [0, 00),
the set of nonnegative real numbers.

Note that in this paper, we do not deal with fuzzy measures A for
which A(X) = co. In T. Murofuschi, M.Sugeno and M. Machida [5],
they discussed non-monotonic fuzzy measures, which are set functions
without monotonicity.

DEFINITION 2.2 ([5],[6]). A non-monotonic fuzzy measure on (X, F)
is a real-valued set function A : F — RY satisfying A(¢) = 0.

Let ® = {¢,} be either a ®*-sequence or a ®-sequence. In [6], the
total ®-variation @V (u) of p on X is defined by

@V (u) = sup {Z ilu(Ai) — p(Aim)l|g = Ao C -+ C 4n = X, } )

where {4;}1L, C F. A real-valued set function p is said to be of
®-bounded variation if and only if ®V () < co. We remark that if
® = {¢,} is the uniformly equicontinuous on R, that is, there is a
positive constant M, independent of n € N and z,y € R, such that

|pn(2) — dn(¥)| < Mz — y|



Choquet ®-integral with respect to non-monotonic fuzzy ®-measures 213

then, the Proposition 2.5([6]) implies that a monotonic fuzzy measure
)\ is of ®-bounded variation. We denote the set of monotonic fuzzy

measures on (X, F) by FM(X,F) and the set of non-monotonic fuzzy
measures of ®-bounded variation on (X, F) by @BV (X, F). Then, the
Theorem 2.9([6]) implies that @BV (X, F) is a real Banach space with
I lls , where

oML : #
ll¢lle = inf{k >0 : @V (k) oI
for every u € @BV (X, F).

DEFINITION 2.3 ([6]). For every p € ®BV(X,F), we define

e (A) = sup {Z $i(le(Ai) — p(Aim))|g = A0 C - C A, A}

d
pg(A4) = sup {Z $i([u(A:) — p(Aicd)]7)|¢=Ao C - CAn= A}
where {A;}", C F, [r]t = max{r,0} and [r]” = max{-r,0}. We

call |u|e, pus, and pg, the total ®-variation, positive total ®-variation,
negative total ®-variation of y, respectively.

Hg(A) = sup {Z $i((p(Ai) — p(Am)]F) ¢ =40 C - C 4a

DEFINITION 2.4 ([6]). Let ® be either ®*-sequence or ®-sequence
and let p be a non-monotonic fuzzy measure on (X, F) of ®-bounded
variation. Then p¢ is defined by

pa(A) = ud(A) — pg(A), for every A€ F

In this case, we say that je is a non-monotonic fuzzy ®-measure on
(X, 7).

3. Characterizations of Choquet ®-integrals.
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T Murofushi, M.Sugeno and M.Machida[5] introduced the Choquet
integral with respect to non-monotonic fuzzy measures. And also, they
discussed the Choquet integral with respect to non-monotonic fuzzy
measures of bounded variation. In this section, we define the Cho-
quet ®-integral with respect to non-monotonic fuzzy ®-measures and
investigate some characterizations of the Choquet ®-integral.

DEFINITION 3.1. The Choquet ®-integral of a measurable function

f: X — R with respect to a non-monotonic fuzzy ®-measure ji¢ 1s
defined by

(C)/fdﬁkh = /00 po p(r)dr

—oQ

whenever the integral in the right-hand side exists. Here, pgs(r) is
defined by

i ) = { pe({z | f(z)>r}), for r >0

us({z | f(@) > r}) - pa(X), forr <0.

We note that ,u;;f and (g ; are defined by

ud (r) = { pg({z | fz) > r}), forr >0
ST g (e | fo) > ) = (), forr <0,

and

. (r):{uép?({wlf(:n)>r}), for 1 > 0
B ue({z | f(2) > 1}) — pg(X), forr <O.

respectively. Since pue(A) = uF(A) —uz(A) for each A € F, it is easy
to show that

(© [ faus =(©) [ raug - () [ sau.

A measurable function f is called ®-integrable on X if the Choquet
®-integral of f exists and its value is finite.
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PROPOSITION 3.2. Let ¢,(2) =z foralln and let f: X — R he
a measurable function. Then we have

(©) [ fdue=(©) [ fan

where (C') [ fdu is the Choquet integral of f with respect to a non-
monotonic fuzzy measure .

PROOF. Since ¢,(x) = x for all n,

partr) = { 1ol 16> ) e 20
! no({z | f(z) > r}) — pe(X), forr <O.
:{F‘({$|f($)>?"}), forr >0
n({z | f(a:) >r})— ,u(X), for r < 0.

= wp(r) for each r € R.

Hence, we have

©) [ fuo = [~ pastryi
= [ st =(©) [ san

From Proposition 3.2, we note that if ¢,(z) = « for all n, then a
measurable function f is ®-integrable if and only if it is integrable.

PROPOSITION 3.3. If ug, ¢ are non-monotonic fuzzy ®-measures,
if @ and b are real numbers, and if f is a measurable function, then

() ] fd(ape + brs) = a(C) / Fdus + b(C) f fdvs

Proor. If r > 0, then we have
(ape +bre), (r) = (ape + bvs) ({z | f(z) > r})
=apgs({z | f(z) > r}) +bve({z | f(z) > r})
= (ape)s(r) + (bve)f(r)
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If » < 0, then we have

(apie + bra) ; (v)
= (aps + bre) ({z | f(z) > r}) = (ape + bva) (X)

= alpe ({z | f(2) > r}) — pe(X)] +blve ({x | f(z) > r}) —ve(X)]
= (apa)f(r) + (bve)5(r)

Hence, for all r € R,
(ape + bre) (1) = apes(r) + bue f(r).
Therefore, we obtain
(©) [ fitas +bra)
=(©) [ (ana + bra)s ()i
=(C) ];o; apg f(r) + bre s(r)dr
= a(C) f_o; po f(r)dr + bf_: ve f(r)dr
= o(C) [ fdus +¥C) [ fiva.

Now the following are some properties of the Choquet ®-integral.

PROPOSITION 3.4. Forevery A€ F, (C) [ladpe = pa(A).
PROOF. Assume that r > 0. If r > 1, then we have

pe({z | La(z) > r}) = pa(s) =0
If 0 <r <1, then we have

pa({z | La(z) > r}) = pe(A).
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Assume that » < 0. Then we have

pa({e | 1a() > r}) = pa(X).

And hence, we have

pe({z | 1a(z) >r}) — pae(X) =0, for each r <O0.

Therefore, we obtain

(©) [ 1adue = [ " pora (7)o

—0oQ

1 1
= [ hon,(ryar = || uaayir = o).
0 0

Let us consider the Choquet ®-integral of a nonnegative simple func-
tion. Every nonnegative simple function f on X can be represented
by

(3.1) Fe=% uils;

=1

where0 < a; <---<ap, <oo, DiND;=¢fori# jand X =UL,D;.

ProposITION 3.5. Let f be a nonnegative simple function as in
(3.1). Then

n

(C)/fdﬂcb = Z(ﬂi — ai—1)pe(Ai)

=1
where A; = UR_.Dy fori=1,2,--- ,n and ag = 0.

PROOF. If r < 0 = ao,

pas(r) = pa({z | f(x) >r}) — pe(X) = pa(X) — pe(X) = 0.
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If aj_y <r<a;foreachi=1,2,---,n, then
pas(r) = pe({z | f(x) > r}) = pe(Ui_;Di) = pa(Ai),

since A; = U}_; Dy for : =1,2,.-- ,n. Therefore, we obtain

(C)/fducp =/Oo e g(r)dr

—Cco

— [ wastryar
0
:Zf uq,f(r)(ir-{-/ pg p(r)dr
i=1 Y %i-1 an
oo a;
= Z/ ”(}(Ai)dr
i=1 v %=1

— Z(ai —a;—1)pe(4;).
i=1

We denote by B(X,F) the set of bounded measurable functions on
(X,F). Then B(X,F) is a real Banach space with respect to the norm
defined by

I/l = sup [f(=)] .
z€X

And also, we denote by BT(X,F) the set of nonnegative bounded
measurable functions on (X, F).

ProrosiTION 3.6. If f € BY(X,F) and a is any nonnegative real
number, then

(©) [ afduo =al©) [ fda.
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PrOOF. If @ = 0, then af(x) = 0 for each € X. So, we have

N pa({ |af(:c)>r}), forr >0
Fatanfr) = { us({z | af(x) > r}) — ua(X), for r <.
(), forr >0
- { u(X) = p(X), forr <.

0 for each r € R.

Hence

(©) [ afdus = [ pagap(riir =0= a0 [ fdua.

If a > 0, we have

pe({z | af(z) > r}), forr >0

Haenlr) = { pe({z | af(z) >r}) — pe(X), forr <0.
={ ra({z | f(z) > I}, forr >0
pe({z | f(x) > Z}) — pe(X), forr<0.

= Hef (E)

Hence

(© [ efdua = | Zucb(af)(?‘)dr

e Py T
=af pas(=)d—

—0oQ

= fl] (e f(s)ds

= a((;)oof fdpe

where s = f
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PROPOSITION 3.7. If f € BY(X,F), then
o0
Kﬂff¢¢=/ o f(r)dr.
0

ProoF. Forr <0,
pos(r) = pe{r € X | f(z) > r} — pa(X)
= pe(X) — pe(X) =0

Hence

Uﬂff@¢=]muwﬁﬂr

-

_ /:o Mf(r)dw/_ﬂm o p(r)dr
= [" astrrar

PROPOSITION 3.8. If f,g € BY(X,F) and f(x) < g(x) for every
v € X, then

(0)/fdn$ < (C)/gd#&?-

ProOF. For each r > 0, we put
A"={ze X | f(z)>r}and B"={x € X | g(z) > r}.
Hence we obtain
Ft;f(r)
=tz e X | f(@)> 1)
= ng(A")

= sup {Z $i([n(A]) — w(Al_ DI )¢ =AgC - C AL = AT}

< sup {Z $i([u(AD) — (AP p=AgC - CAL = Br}

i=1

.
- ”@ga
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where {A]}i-, C F. Therefore, we have

(1)

(i)

© [ saug <€) [ an.

We remark that

by the similarity of the proof of the proposition 3.8, it is easy to
show that

(© [ iz < (©) [ o

under the same hypotheses ;
in general, it is not true that (C) [ fdue < (C) [gue, whenever
f,g € BY(X,F) and f(z) < g(a) for every z € X ;

(iii) from the proposition 3.6, the Choquet

1]

®-integral functional on BT (X, F) satisfies positively homogeneous.
Here, the definition of positively homogeneous was introduced by T.
Murofushi, M. sugeno and M. Machida [5].
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