REPRESENTATIONS OF THE CONNECTION IN *g-SEMISYMMETRIC MANIFOLD

PHIL UNG CHUNG

I. INTRODUCTION

Let X_n be an n-dimensional generalized Riemannian space referred to a real coordinate system x^{ν} , which obeys coordinate transformation $x^{\nu} \longleftrightarrow x^{\nu\prime}$ for which

(1-1)
$$\det\left(\frac{\partial x'}{\partial x}\right) \neq 0.$$

The space X_n is endowed with a general real non-symmetric tensor $g_{\lambda\mu}$ which may be split into its symmetric part $h_{\lambda\mu}$ and skew-symmetric part $k_{\lambda\mu}(*)$:

$$(1-2) g_{\lambda\mu} = h_{\lambda\mu} + k_{\lambda\mu},$$

where

(1-3)
$$g \stackrel{\text{def}}{=} \det(g_{\lambda\mu}) \neq 0, \quad \mathfrak{h} \stackrel{\text{def}}{=} \det(h_{\lambda\mu}) \neq 0.$$

The algebraic structure is imposed on X_n by the basic real tensor ${}^*g^{\lambda\nu}$ defined by

$$(1-4) g_{\lambda\mu}^* g^{\lambda\nu} = g_{\mu\lambda}^* g^{\nu\lambda} = \delta_{\mu}^{\nu}$$

Received June 13, 1995.

^(*)Throughout the present paper, all Greek indices take the values $1, 2, \dots, n$ and follow the summation convention.

in virtue of (1-3). It may be decomposed into its symmetric part $^*h^{\lambda\nu}$ and skew-symmetric part $^*k^{\lambda\nu}$:

(1-5)
$$*q^{\lambda \nu} = *h^{\lambda \nu} + *k^{\lambda \nu}.$$

Since det $(*h^{\lambda\nu}) \neq 0$, we may define a unique tensor $*h_{\lambda\mu}$ by

$$(1-6) ^*h_{\lambda\mu} {}^*h^{\lambda\nu} == \delta_{\mu}{}^{\nu}.$$

which togather with ${}^*h^{\lambda\nu}$ will serve for raising and/or lowering indices of all tensors defined in X_n in the usual manner.

The space X_n is connected by a general real connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$ with the following transformation rules:

(1-7)
$$\Gamma_{\lambda \iota}{}^{\nu \iota}{}_{\mu \iota} = \frac{\partial x^{\nu \iota}}{\partial x^{\alpha}} (\frac{\partial x^{\beta}}{\partial x^{\lambda \iota}} \frac{\partial x^{\gamma}}{\partial x^{\mu \iota}} \Gamma_{\beta}{}^{\alpha}{}_{\gamma} + \frac{\partial^{2} x^{\alpha}}{\partial x^{\lambda \iota} \partial x^{\mu \iota}})$$

It may also be decomposed into its symmetric part $\Lambda_{\lambda}{}^{\nu}{}_{\mu}$ and its skew-symmetric part $S_{\lambda\mu}{}^{\nu}$, called the torsion tensor of $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$:

(1-8)
$$\Gamma_{\lambda}{}^{\nu}{}_{\mu} = \Lambda_{\lambda}{}^{\nu}{}_{\mu} + S_{\lambda\mu}{}^{\nu}$$

The Einstein condition for defining the connection $\Gamma_{\lambda}{}^{\nu}\mu$ is given by

$$(1-9a) D_{\omega}^* g^{\lambda \mu} = -2S_{\omega \alpha}^{\mu *} g^{\lambda \alpha},$$

or equivalently,[4],

$$(1-9b) D_{\omega}g_{\lambda\mu} = 2S_{\omega\mu}{}^{\alpha}g_{\lambda\alpha},$$

which gives X_n the differential geometric structure on the geometry of Einstein's unified field theory. Here D_{ω} denotes the symbol of the covariant derivative with respect to $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$. A connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$ is said to be semi-symmetric if its torsion tensor is of the form

$$(1-10) S_{\lambda\mu}{}^{\nu} = 2\delta_{[\lambda}{}^{\nu}X_{\mu]}$$

for an arbitrary nonnull vector X_{μ} . The n-dimensional *g-semi-symmetric manifold is the space X_n , on which the differential structure is imposed by * $g^{\lambda\nu}$ through a semi-symmetric connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$, which satisfies the Einstein's condition. In what follows, we denote the n-dimensional *g-semi-symmetric manifold by X_n .

II. PRELIMINARIES

We shall introduce the following abbreviations:

(2-1a)
$${}^{(0)*}k_{\lambda}{}^{\nu} = \delta_{\lambda}{}^{\nu}, {}^{(p)*}k_{\lambda}{}^{\nu} = {}^{(p-1)}{}^{*}k_{\lambda}{}^{\alpha*}k_{\alpha}{}^{\nu}, (p=1,2,\cdots)$$

(2-1b)
$$Y_{\lambda}^{(p)} = {}^{(p)*}k_{\lambda}{}^{\alpha}Y_{\alpha}, \quad (p = 0, 1, 2, \cdots).$$

for arbitrary vector Y_{λ} . The following quantities will be used:

(2-2a)
$$*\mathfrak{g} = \det(*g_{\lambda\mu}), *\mathfrak{h} = \det(*h_{\lambda\mu}), *\mathfrak{t} = \det(*k_{\lambda\mu})$$

(2-2b)
$$*g = \frac{*\mathfrak{g}}{*\mathfrak{h}}, \qquad *k = \frac{*\mathfrak{k}}{*\mathfrak{h}}$$

(2-2c)
$$\sigma = \begin{cases} 0, & \text{if n is even} \\ 1, & \text{if n is odd} \end{cases}$$

(2-2d)
$$K_p = {}^*k_{[\alpha_1}{}^{\alpha_1} {}^*k_{\alpha_2}{}^{\alpha_2} \cdots {}^*k_{\alpha_p]}{}^{\alpha_p}, \quad (p = 0, 1, 2, \cdots)$$

$$(2-2e) (p) B^{\lambda \nu} = {}^{(p)*}k^{\lambda}{}_{\alpha}B^{\alpha \nu},$$

where $B^{\lambda\nu}$ is an arbitrary symmetric tensor.

It may be easily shown that

(2-3a)
$${}^{(p)*}k_{\lambda\mu} = (-1)^p \cdot {}^{(p)*}k_{\mu\lambda}, \quad (p=0,1,2,\cdots)$$

(2-3b)
$$\begin{cases} K_0 = 1, & K_n = {}^*k, & \text{if n is even} \\ K_p = 0, & \text{if p is odd} \end{cases}$$

(2-3c)
$$*g = \sum_{s=0}^{n-\sigma} K_s,$$

(2-3d)
$$\sum_{s=0}^{n-\sigma} K_s^{(n-s)*} k_{\lambda}^{\mu} = 0.$$

THEOREM 1. If there exists a semisymmetric connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$ in X_n , it must of the form

(2-4a)
$$\Gamma_{\lambda^{\nu}_{\mu}} = {}^{*} \{_{\lambda^{\nu}_{\mu}}\} + 2\delta_{[\lambda^{\nu}}X_{\mu]} + U_{\lambda\mu}^{\nu},$$

where

$$(2-4b) U_{\lambda\mu}^{\nu} \stackrel{def}{=} -*h_{\lambda\mu}X^{\nu}.$$

proof. See [3].

In the next Theorem we shall assume that the symmetric real tensor $A_{\lambda\mu}$ defined by

(2-5)
$$A_{\lambda\mu} \stackrel{\text{def}}{=} (1-n)^* h_{\lambda\mu} + {}^{(2)*} k_{\lambda\mu}$$

is of rank n, so that there exists a unique symmetric inverse tensor $B^{\lambda\nu}=B^{\nu\lambda}$ satisfying

$$(2-6) A_{\lambda\mu}B^{\lambda\nu} = \delta_{\mu}{}^{\nu}.$$

THEOREM 2. There exists a unique semi-symmetric connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$ in X_n if and only if there is a vector X_{λ} such that

(2-7)
$$\nabla_{\omega}^* k_{\lambda\mu} = 2^* h_{\omega[\lambda} X_{\mu]} + 2^* k_{\omega[\mu}^* k_{\lambda]}^{\alpha} X_{\alpha}.$$

The vector X_{λ} satisfying (2-7) is unique and may be given by

$$(2-8) X_{\lambda} = B_{\lambda}{}^{\alpha} \nabla_{\beta} {}^{*} k_{\alpha}{}^{\beta}.$$

proof. See [3].

We shall need several properties of the vector X_{λ} , given by (2-8), and the vectors

$$S_{\lambda} \stackrel{def}{=} S_{\lambda\alpha}{}^{\alpha}, \quad U_{\lambda} \stackrel{def}{=} U^{\alpha}{}_{\lambda\alpha},$$

and some useful recurrence relations.

THEOREM 3. In X_n , the following recurrence relations hold:

(2-9a)
$${}^{(p)}B^{\lambda\nu} = (n-1)^{(p-2)}B^{\lambda\nu} + {}^{(p-2)*}k^{\lambda\nu},$$

(2-9b)
$$X_{\lambda}^{(p)} = (n-1) X_{\lambda}^{(p-2)} + Y_{\lambda}^{(p-2)}, \quad (p=2,3,4,\cdots)$$

where

$$(2-9c) Y_{\lambda} \stackrel{def}{=} \nabla_{\alpha} {}^{*}k_{\lambda}{}^{\alpha}.$$

proof. Substituting (2-5) into (2-6) and multiplying $^{(p-2)*}k^{\lambda\mu}$, we obtain (2-9)a. Similarly we obtain (2-9)b from (2-8).

THEOREM 4. In X_n , the following recurrence relations hold:

(2-10a)
$$\sum_{s=0}^{n-\sigma} K_s{}^{(n-s)} B^{\lambda \nu} = 0,$$

(2-10b)
$$\sum_{s=0}^{n-\sigma} K_s \overset{(n-s)}{X_{\lambda}} = 0.$$

proof. These are the direct consequences of the relations (2-2e), (2-3d) and (2-1b).

THEOREM 5. In X_n , the following relations hold:

(2-11a)
$$X_{\lambda} = \frac{1}{1-n} S_{\lambda}, \quad U_{\lambda} = -k_{\lambda}^{\alpha} X_{\alpha} = -X_{\lambda}^{(1)}$$

(2-11c)
$$U_{\omega} = -\frac{1}{2} \partial_{\omega} \ln {}^{*}g \stackrel{\text{def}}{=} -Z_{\omega}.$$

proof. (2-11a) follows from (1-10) and (2-4b). (2-11b) may be easily from (2-11a) and (2-1b). In order to prove the relation (2-11c) use (1-4) and (1-6) to obtain

$$\ln \mathfrak{g} = -\ln \mathfrak{g} + 2\ln \mathfrak{h}$$

On the other hand, multiply (1-9b) by ${}^*g^{\lambda\nu}$ and put $\nu=\mu$. Then we have

$${}^*g^{\lambda\nu}D_{\omega}g_{\lambda\nu} = \mathfrak{g}^{-1}D_{\omega}\mathfrak{g} = 2S_{\omega},$$

from which we have

$$0 = \mathfrak{g}^{-1} D_{\omega} \mathfrak{g} - 2S_{\omega}$$

$$= \mathfrak{g}^{-1} \left(\partial_{\omega} \mathfrak{g} - 2\Gamma_{\alpha}{}^{\alpha}{}_{\omega} \mathfrak{g} \right) - 2S_{\omega}$$

$$= \partial_{\omega} \ln \mathfrak{g} - 2 \left(* \left\{ {}_{\alpha}{}^{\alpha}{}_{\omega} \right\} - S_{\omega} + U_{\omega} \right) - 2S_{\omega}$$

$$= \partial_{\omega} \ln \mathfrak{g} - \partial_{\omega} \ln^* \mathfrak{h} - 2U_{\omega}.$$

The relation (2-11c) follows immediately from (*) and (**).

We shall need the following scalar \bar{K}_s : (2-12)

$$\bar{K}_0 \stackrel{\text{def}}{=} 0, \quad \bar{K}_s \stackrel{\text{def}}{=} (n-1)\bar{K}_{s-2} + K_{s-2}, \quad (s=2,4,6,\cdots,n+2-\sigma)$$

Direct calculation shows that

(2-13)
$$\bar{K}_{n+2-\sigma} = K_0 M^{n-\sigma} + K_2 M^{n-2-\sigma} + \dots + K_{n-\sigma}, M \stackrel{\text{def}}{=} \sqrt{n-1}.$$

III. THE VECTOR X_{λ}

THEOREM 6. (The first representation for X_{λ}) The tensor $B^{\lambda\nu}$ and the vector X_{λ} in X_n may be given by

$$(3\text{-}1)\ \{1+(n-2)\sigma\}\,B^{\lambda\nu} = -\frac{1}{\bar{K}_{n+2-\sigma}}\sum_{s=0}^{n-\sigma}\bar{K}_s\{^{(n-s+\sigma)*}k^{\lambda\nu} - \sigma^*h^{\lambda\nu}\},$$

$$(3-2) \qquad \{1 + (n-2)\sigma\} \, X_{\lambda} = -\frac{1}{\bar{K}_{n+2-\sigma}} \sum_{s=0}^{n-\sigma} \bar{K}_s \{ {\stackrel{(n-s+\sigma)}{Y_{\lambda}}} - \sigma Y_{\lambda} \},$$

where the vector Y_{λ} is defined by (2-9c).

proof. Substitute for ${}^{(n)}B^{\lambda\nu}$ into (2-10a) from (2-9a) to obtain

(3-3a)
$$\bar{K}_2^{(n-2)*}k^{\lambda\nu} + \bar{K}_4^{(n-2)}B^{\lambda\nu} + K_4^{(n-4)}B^{\lambda\nu} + \dots + K_{n-\sigma}^{(\sigma)}B^{\lambda\nu} = 0.$$

Substituting again for $^{(n-2)}B^{\lambda\nu}$ into (2-10a) from (2-9a), we have (3-3b)

$$\bar{K}_{2}^{(n-2)*}k^{\lambda\nu} + \bar{K}_{4}^{(n-4)*}k^{\lambda\nu} + \bar{K}_{6}^{(n-6)}B^{\lambda\nu} + K_{6}^{(n-6)}B^{\lambda\nu} + \dots + K_{n-\sigma}^{(\sigma)}B^{\lambda\nu} = 0.$$

After $\frac{n-\sigma}{2}$ steps of successive repeated substitutions for ${}^{(p)}B^{\lambda\nu}$, we have

(3-3c)
$$\bar{K}_{2}^{(n-2)*}k^{\lambda\nu} + \dots + \bar{K}_{n-2-\sigma}^{(2+\sigma)*}k^{\lambda\nu} + \bar{K}_{n+2-\sigma}^{(\sigma)}B^{\lambda\nu} = 0.$$

Now multiply $^{(\sigma)}*k_{\nu}{}^{\mu}$ to both sides of (3-3c) to obtain

(3-3d)
$$\bar{K}_{2}^{(n-2+\sigma)*}k^{\lambda\mu} + \dots + \bar{K}_{n-2-\sigma}^{(2+2\sigma)*}k^{\lambda\mu} + \bar{K}_{n-\sigma}^{(2\sigma)*}k^{\lambda\mu} + \bar{K}_{n+2-\sigma}^{(2\sigma)}B^{\lambda\mu} = 0.$$

Substituting

$$^{(2\sigma)}B^{\lambda\mu} = \{1 + (n-2)\sigma\} B^{\lambda\mu} + \sigma^*h^{\lambda\mu}$$

into (3-3d), we have (3-1). The relation (3-2) may be easily obtained from (3-1) and (2-8).

THEOREM 7. (The second representation for X_{λ}) The vector X_{λ} in X_n may be given by

$$(3-4) \qquad \left\{1 + (n-2)\sigma\right\} X_{\lambda} = -\frac{1}{K_{n-\sigma}} \sum_{s=0}^{n-\sigma} K_s \left\{ \begin{array}{c} (n-1-s+\sigma) \\ Z_{\lambda} \end{array} - \sigma Y_{\lambda} \right\}$$

under the condition $K_{n-\sigma} \neq 0$.

proof. Multiply $^{(\sigma)*}k_{\mu}{}^{\lambda}$ to both sides of (2-10b). Then we have

$$(3-5) \ K_0 \overset{(n+\sigma)}{X_{\lambda}} + K_2 \overset{(n-2+\sigma)}{X_{\lambda}} + \dots + K_{n-2-\sigma} \overset{(2+2\sigma)}{X_{\lambda}} + K_{n-\sigma} \overset{(2\sigma)}{X_{\lambda}} = 0.$$

Substituting

$$\overset{(2\sigma)}{X_{\lambda}} = \left\{1 + (n-2)\sigma\right\}X_{\lambda} + \sigma Y_{\lambda}$$

into (3-5) and using (2-11b,c), we have (3-4).

THEOREM 8. (The third representation for X_{λ}) We have

$$(3-6) \hspace{1cm} X_{\lambda} = \frac{1}{n-1} \left\{ \frac{1}{2} {}^{*}k_{\lambda}{}^{\alpha} \partial_{\alpha} \ln {}^{*}\mathfrak{g} - \nabla_{\alpha} {}^{*}k_{\lambda}{}^{\alpha} \right\}.$$

proof. The relation (3-6) follows from the relation (2-8), (2-11a,c).

REMARK. Now that we have obtained the vector X_{λ} in terms of ${}^*g^{\lambda\nu}$ in (3-2), (3-4) and (3-6), it is possible for us to determine the semi-symmetric connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$ in terms of ${}^*g^{\lambda\nu}$ by only substituting for X_{λ} into (2-4a).

References

- 1. K. T. Chung, n-dimensional representations of the unified field tensor $*g^{\lambda\nu}$, Int. Jour. of Theoretical Physics **20** (1981), 739–747.
- K. T. Chung and C. H. Cho, Some recurrence relations and Einstein's connection in 2-dimensional unified field theory, Acta Mathematica 41 (1983), 47-52.
- 3. K. T. Chung, n-dimensional SE-connection and its conformal change, J. of NSRI 15 (1985), 1-10.
- 4. V. Hlavaty, Geometry of Einstein's Unified Field Theory, Noordhoop Ltd, 1957.

Department of Mathematics Kangwon National University Chuncheon, 200-701, Korea