SOME PROPERTIES OF *-BARRELLEDNESS

YONGSUNG BYUN

1. Introduction.

S. G. Gaval and K. Anjanevulu([1],[2]) introduced the concepts of two new classes of locally convex spaces, which they call *-barrelled and quasi*-barrelled spaces to generalize the well known classes of barrelled and quasibarrelled spaces respectively. In this note, we consider a relationship between quasi *-barrelled spaces and semi-Montel spaces and equivalence of barrelledness, quasibarrelledness and *-barrelledness of reflexive locally convex spaces. Also we show the following fact: Let E be a locally convex space and F a reflexive locally convex space. Suppose that there exists a continuous linear almost open mapping fof E into F. If E is a quasi *-barrelled space, so is F. Let E be a locally convex space and E' its dual space. A subset of E is said to be a *-barrel(bornivorous *-barrel) if it is the polar of a relatively compact subset of E' for the topology $\sigma(E', E)(\beta(E', E))([1], [2])$. The locally convex space E is said to be *-barrelled(quasi *-barrelled) if every *-barrel(bornivorous *-barrel) in E is a neighborhood of 0 ([1 [0, [2]]). It is well known ([1], [2]) that a locally convex space E is *barrelled(quasi *-barrelled) if and only if every subset of E' which is relatively $\sigma(E', E)(\beta(E', E))$ -compact is equicontinuous. Every barrelled space is quasibarrelled and *-barrelled; and quasibarrelled(*-barrelled) space is quasi *-barrelled. All spaces in this note are to be Hausdorff. The notations and definitions used here, and in what follows, are those of [3], unless explicitly stated to the contrary.

2. Results.

Received October 28, 1994.

Theorem 1. If E is a quasicomplete quasi *-barrelled locally convex space, then it is semi-Montel.

Proof. This follows directly from proposition 1[1] and proposition 11.5.2[4].

Theorem 2. Let E be a reflexive locally convex space. Then the following statements are equivalent:

- (1) E is barrelled
- (2) E is quasibarrelled
- (3) E is *-barrelled.

Proof. (1) \Longrightarrow (2) is obvious. (2) \Longrightarrow (3): Let B be a relatively $\sigma(E',E)$ -compact subset of E'. Then it is $\sigma(E',E)$ -bounded. Since E is quasicomplete, B is $\beta(E',E)$ -bounded. Since E is quasibarrelled, B is equicontinuous. Hence E is *-barrelled. (3) \Longrightarrow (1): Let B be a $\sigma(E',E)$ -bounded subset of E'. Since E' is a semireflexive locally convex space, B is a relatively $\sigma(E',E)$ -compact subset of E'. Since E is a *-barrelled space, B is an equicontinuous subset of E'. Hence E is a barrelled space. □

LEMMA. Let E and F be locally convex spaces and f a continuous linear mapping of E into F. If B is any bornivorous *-barrel in F, Then $f^{-1}(B)$ is also a bornivorous *-barrel in E.

Proof. Since $f: E \to F$ is continuous, its transpose $f': F' \to E'$ is continuous for $\sigma(F', F)$ and $\sigma(E', E)$ and also for $\beta(F', F)$ and $\beta(E', E)$. Let B be a bornivorous *-barrel in F. Then there is a relatively $\beta(F', F)$ -compact subset M of F' such that $B = M^o$. Since $f'(\overline{M})$ is a $\beta(E', E)$ -compact subset of E',

$$f'(\overline{M}) \subset \overline{f'(M)} \subset \overline{f'(\overline{M})} = f'(\overline{M})$$

and $\overline{f'(M)} = f'(\overline{M})$. Therefore f'(M) is a relatively $\beta(E', E)$ -compact subset of E'. And $(f'(M))^o = \{(f')'\}^{-1}(M^o) = f^{-1}(B)$. Hence $f^{-1}(B)$ is a bornivorous *-barrel in E.

Theorem 3. Let E be a locally convex space and F a reflexive locally convex space. Suppose that there exists a continuous linear

almost open mapping f of E into F. If E is a quasi *-barrelled space, so is F.

Proof. Let B be a bornivorous *-barrel in F. Then $f^{-1}(B)$ is also a bornivorous *-barrel in E by Lemma. Since E is a quasi *-barrelled space, it follows that $f^{-1}(B)$ is a neighborhood of 0 in E. Since f is an almost open mapping of E into F and the topology $\beta(F, F')$ on F is compatible with the duality between F and F' by assumption,

$$\overline{f(f^{-1}(B))} \subset \overline{B} = B.$$

Hence B is a neighborhood of 0 in F. Therefore F is a quasi *-barrelled space.

References

- S.G.Gayal, On quasi *-barrelled space, Tamkang J. Math. 21 No. 4 (1990), 341-344.
- [2] S.G.Gayal and K. Anjaneyulu, On *-barrelled space, J. Math. Phy. Sci 18 No. 2 (1984), 111–117.
- [3] J. Horvath, Topological vector spaces and distributions, Addison-Wesley, 1966.
- [4] H. Jarchow, Locally convex space, B.G. Teubner, Stuttgart West Germany, 1985.

Department of Mathematics Education Hongik University Seoul, 121–791, Korea