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ON 4-DIMENSIONAL EINSTEIN MANIFOLDS
WHICH ARE POSITIVELY PINCHED

KwAN-SEOK KO

1. Introduction.
The purpose of this paper is to prove the following,.

THEOREM. Let M Dbe a closed oriented connected Einstein I-
manifold whose sectional curvature k satisfies 1 > Lk > 6. It 6 > % 2
0.1176471, then M is topologically S* or +CP2,

In [10], Seaman proved that if § > ———L——— ~ 0.1714 then §
3 14329 /52741
pinched Riemannin 4 manifold is definite. Under this Seaman’s pinch-
ing condition, we obtained

1) o (M) < ZX(M),

where o(M) is the signature of M and x(M) is the Euler characteristic
of M [7]. It follows that the second Betti number satisfies by(M) < 1.
Since M is compact, even dimensional, oriented, and positively curved,
it is simply connected by Synge theorem. Freedman'’s classification
theorem [5] states that smooth compact simply connected 4-manifolds
are classified topologically by their intersection form. Therefore M is
topologically a 4-sphere S* or a complex projective 2-plane £CPZ.

We will apply Seaman’s method to the Einstein manifold with pinch-
ing hypothesis. This idea was originally due to Berger [3] in dimension
5 (later, Bourguignon [4] in dimension 4). First, we show that the man-
ifold is definite under the hypothesis of theorem, and then by adapting
Hitchin’s argument [6, 11] we have the same inequality (1). Then we
have the conclusion of theorem.
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We announce here that the pinching constant in the theorem lower
down to 0.1138113.

For a compact Einstein 4-manifold with nonnegative (or nonposi-
tive) sectional curvature, Hitchin [6] proved that

2
D] 2
lo(M)| < (é) (M) = 0.5543\(M).

2. Harmonic 2 form and Weitzenbock formula.
A harmonic 2-form X on a Riemannian manifold satisfies

!
(2) 0= ;A'.YIZ + V|.Y|2+ < R X, X >,

where R, is the Weitzenhock operator whose pointwise action is as
follows:

(3) < Ra(vy A vg),wy Awy) >
=Ric(vy,w;) < vg,wy > +Ric(vg, wy) < vy, wy >
— Ric(vy, wy) < vo,w; > —Ric(vy, wy) < vy, wq >
— 2 < R(vy,v2)wy, wp >,

where v;, w; are tangent vectors, < -,- > is the inner product, Ric(resp.
R) is the Ricci (resp. Riemann) curvature tensor and we identify two
vectors with two forms via the inner product.

On an oriented 4-manifold M, one has the Hodge star operator *
taking two forms to two forms and satisfying *? = 1, which yields the
splitting of these forms into the +1 eigenspace A7.

Given X4 € AL, at any point p, there are orthonormal vectors ey, es
such that .

Xy X_

e

| X+ X<
Let T, M be the tangent space of M at a fixed point p € M.

Letting {e1, €2, €3,€4} be a positively oriented orthonormal basis for
T,M, we have #(e; A ez) = e3 A eg. Let X be a two-form on a four-
manifold with X, X_ the self-dual and anti-self-dual components,
respectively. Then for X = X + X_, we get

V2 2
X = —é'"(‘X+|+IX_I)C]/\62+—\é——(|X+|—|.-Y_.|)€3f\64 at P-

= \/«6-'61 A es.
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Using (3), it is easy to see that
< R X, X >p= }.le(f\—lr) + Kyq+ Ko+ Kay) — 2R1234(|X+|2 — I_X..lz),
where K;; = (I(P)) is the sectional curvature of the plane e;Ae;(= P)
and

R =< Rllegei)en: 1>

If we assume that 1 > & > &, then using the Berger’s inequality

|Rijri| < %(1 — &), we have a global estimate
4 . .

(4) < RyX, X >> 48| X|? - §(1 — &) || X4 > = | X7

Kato inequality states that if X, # 0, then one has |V|X||? < |VX|?
at p.

On applying the conformal invariance of the middle dimensional har-

monic forms, Seamam [10] improved Kato’s inequality for 4-manifolds
in the following.

ProrposITION 1([10]). Let M be a 4-dimensional Riemannian
manifold. Let X be a harmonic 2-form on M. Then X satisfies the
pointwise inequality

(5) AVXP 2

[SVA V]

IVIX]|%.

In order to obtain the theorem, we need the estimate about the first
eigenvalue Ay of the Laplacian acting on functions of M.

PRroPOSITION 2(LICHNEROWICZ[1]).  If the Ricci tensor R;; of M,
a compact Riemannian n-dimensional manifold with the metric tensor
iz is such that 2-tensor

Rij — kgi; is nonnegative for some k > 0, then Ay > nL—AI

PROPOSITION 3. Under the hypothesis of theorem, the first
nonzero eigenvalue A\ of the Laplacian action on functions of M satis-

fles
4+ 86

(6) Mz —
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Proof. A 4-dimensional Einstein metric is a metric for which the
Ricci tensor R;; and the metric tensor g;; is proportional

S
A

R,‘j= 1

where the scalar curvature S is a constant.

Singer and Thorpe’s characterization of an Einstein manifold is that,
for each tangent plane P, K(P) = K(P<) where PL is the oriented
orthogonal complement of P [11]. Hence S > 4 4 85. Combining the
Proposition 2, we get

4486

4 S
D — = >
’\1—3 4= 3

3. Euler characteristic and Signature.
We use the normal form for the curvature tensor at each point of a
4-dimensional Einstein manifold.

We regard the curvature tensor R as a self-adjoint linear endomor-
phism of the bundle A? of 2-forms defined by

1
R(ei A ej) = -2-2 RiizieiNe;

relative to a local orthonormal basis {e;} of the 1 forms.
The Einstein curvature tensor R can be decomposed into the or-
thogonal components which have the same symmetries as R :

R=U+W

where W is the Weyl conformal curvature tensor, and U denote the
scalar curvature part. Singer and Thorpe showed that *Ws = W.
Therefore W decompose into W*. Here W+ and W~ are the self-dual
and anti-self-dual components of W, respectively.

The theorem on the normal form of R states that there exists an
orthonormal basis such that relative to the corresponding basis {e; A
ea,e1 Neg,eq Aeg,e3 Aeyg,eq Aeg,ez Aeg} of A2 R takes the form

B
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aq 0 0 bl 0 0
where A= 0 a; 0 |,B= |0 by 0. The Bianchi identity
0 0 ay 0 0 b

implies that
3

=1
— = B
to regard @ = (ay, ag, ay) and b = (by, by, b3) as vectors @, b € R3.
We make use of this expression of R to write the formulas for the
integrands of the characteristic numbers :

3
Y. bi =0, moreover Y a; = :lyTra.ce(R} = —’2— It will be convenient
=1 -

1 1 ;
x(M) =/ N(R)V = —zf WU + ||W||2dV,
J M 87T M

o(M) = V2 — W2V,

o(M) :%p,(]\ff) = %/Mpl(R)dV,

where p;(M) is the Pontryagin number of M.
With these notations above, we have

U +w|? =2 Z 2 Lb%),

i=1

|W|? = Z(ai + b;)?, where @} = a; — o, U = aldgzpzv,

3
W17 =) (a; — bi)?,
i=1
||W+||2 |w— ”2 _42 arl; = 420. :b;  (because Zb, = 0)

i=1

We obtain

(7) X(R) — pi(R) = ("Z(a +bz)—4Zab)

i=1
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4. Proof of theorem.

We first show that the manifold satisfying the hypothesis of theorem
is definite.

Assume that M is indefinite, then there exist nonzero harmonic 2-
forms X and X_ so that

Jrx= f1x-

Now |X4| are weakly differentiable [2]. From the variational char-
acterization of Ay, one has

®) [ AR S P AR
From (5), we get the following inequality in the sense of distribution
. . 4 2
V(4] — 1X-DP < 5ITX

Using this inequality, we obtain

(9) Jroxez 3 faxa- e

We substitute (4), (6) and (9) into (2) and integrate over M. Since
Sy AIX|? =0, we have

3 -2 4 = s r r
(10) 0> [ 481X 5(1-0) | X4 = 1X-P+(1+25)(1 X |- X1}
Let b= |X4|+|X-| > ||X+]| - |X~|| = . We may write the integrand

in (10) as
4 :
26b% — 5(1 — )ab+ (1 + 26 + 28)a’.
If @ = 0, then this is an obvious contradiction.

Suppose now that a # 0. A contradiction to M’s indefiniteness is
obtained if we can show that

(11)  66a® —4(1 —8)a+3(1+48) >0 where o =— > 1.

2|
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It follows from the diseriminant of (11), we have (176 —2)(26 +1) > 0.
Thus we conclude that M is a definite manifold if § > %

Next, we show that (1) holds for the Einstein manifold with given
conditions. Since the critical values of sectional curvature are positive.,
the numbers {a;}?_, are all positive. Observing (7), it is easy to ma-

3
2 Z (l.,"?,j

i=1
3
ST (a? 4+ %)

=1

jorize its quantity when variables {a;}, {b;} are subject

3
to the constraints Y bp=0amld<ui<1,71=1.28.
i=1
In the Euclidean space R* consider two vectors @ = (ay, as, as),
b= (b, bg, bs). Let 8 be the angle of these two vectors @ and b. Then we

QZab

set ————— < cosf. Therefore we have cosf < \/7 In
,/ r) 2
(a? + 12) -

Mw

1

fact, sin§ = —2L L 02 + L = attains its minimum on the boundary
\/_\/cr -+ (L + “.s

?

of the domain {§ < a; < 1]|i=1,2,3}, whence sin@ > % 11%—%,662'
Thus we obtain,

2 1-9

pi(R) < 24/ = ———.
P]( )_ 3 m

This is equivalent to the inequality

2)2 1-¢
(12) lo(M)] < (g) \/ﬁk’(ﬂ/ﬁ-

We conclude that (1) holds if 6 > -127 O

REMARK 1. We note that (1) holds for a negative T"?T—pincbed
Einstein manifold.

Wi

REMARK 2.  From (12) if we solve (%) ﬁ < &, then (1)
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is satisfied for the Einstein 4-manifold with 1 > k > ¢ ~ 0.0761326 (or
-1<k< -6~ —0.0761326).
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