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THE NONLINEAR SUSPENSION BRIDGE
EQUATION WITH A ROTARY INERTIA TERM

Q-Heung Cuor*, KYEONGPYO CHOI AND TACKSUN JUNG

0. Introduction.

In this paper we investigate the existence of solutions of a nonlinear

: ; il T
suspension bridge equation. in (—;, 5) x R, of the type

(0.1)
—Kqtzzn + i+ Kotigges + Kaut =1+ kcosz + eh(z, t),

u (:l:g,t) = Usyy (ig,t) =

The first term in (0.1), due to L. Rayleigh, represents the effect of
rotary inertia, as can be traced from the derivation. In many applica-
tions, its effect is small.

McKenna and Walter [7] studied nonlinear oscillations in a nonlinear
suspension bridge equation without the first term in (0.1)

(0.2)

Uty + Ugrrz 7 b“‘+ =1 T Eh(-’L‘, t) in (_E E) b Rﬁ

u (d:g-,t) = Uy (:i:%,t) =i,

This equation represented a bending beam supported by cables under
a constant load w = 1. The constant b represented the restoring force
if the cables were stretched. The nonlinearity u™ models the fact that
cables resist expansion but do not resist compression. They proved
a counterintuitive result : if the cables were weak, that is, b is small
then there was only a unique solution. However, if b was large (that
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is, the cables were strengthened), then large scale oscillatory periodic
solutions existed.

In this paper we improve this result in two ways. First, we generalize
the beam equation to include the effect of rotary inertia. Second, we use
variational reduction method to study this suspension bridge equation.

In sections 1 and 2 we shall deal with the nonlinear bridge equation
T

with constant coefficients, in (—;, -2-) x R
(0.3)

1
—Zum, 4 Ugp + Uggze +0uT =14 kcosa + ch(a,t)

m s
u (i"é",t) = Ugy (:*:g,f) = 0,

where 4 < b < 19. The effect of the first term in (0.1) is small, so we
took the small coefficient ¥ in (0.3). We shall assume that A in (0.3)

is even in 2 and ¢ and periodic with period = and we shall look for
m-periodic solution of (0.3).

In section 3, we study equation (0.3) under a weak periodic condi-
tion, by a variational reduction method.

1. A Priori Bound.

Let L be the differential operator

Lu = "Zuzztt + Ut + Uprze-

The eigenvalue problem for u(z,t)
, T T
(11] Lu=XAu in (—5, E) X R,
T T
u(£2,) = e (£3.¢) =0,
u(z,t) = u(—z,t) = u(z, —t) = u(z,t + )

has infinitely many eigenvalues A,,, and corresponding eigenfunctions
Pmn(m,n > 0) given by

h—— 1)4 —mA((2n 4 1} 4 &) A= 0

S mn = cos2mt cos(2n + 1)z
b
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We remark that all eigenvalues in the interval (—36,29) are given by

}\39 =—=19 < /\]0 =—4< /\(]0 =1 1
The normalized eigenfunctions are denoted by

qun
[émall’

grnn =

m

where ||¢mn|l = = for (m > 0), ||¢onl| = e Let @ be the square

T
9
[—g, g] X [—% %] and H be the Hilbert space defined by

H

{u € Ly(Q) : u is even on z and t}.

Then the set of {0,,,} is an orthonormal base in H.
We consider weak solutions of problems of the type

(1.2) Lu= f(u,z,t) in (—i,i)xR,

2°2
u (:I:%,t) = Mgy (:l:g,t) =(;

where u is even and m-periodic in ¢ and even in @. A weak solution of
(1.2), which is also called a solution in H, is of the form

u= Z cmnbmn with Lu € H;

e, SoA2 % isfinite. Our function will be such that v € H implies
) (u, x,t) € H. The following symmetry theorem was proved in [10].

THEOREM 1.1. Let H = Ly(Q). Assume that L : D(L) — H
is a linear, selfadjoint operator which possesses two closed invariant
subspaces Hy and Hy = HJ' Let ¢ denote the spectrum of L and

af
o; the spectrum of Ly, (i = 1,2;0 = 01 Uo3z). Let a—(u x) = fy be

piecewise smooth and assume that f, € [a,b] for u € R and x € Q.
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If [a,b) N o2 = ¢ and if the Nemytzki operator v — Fu = f(u(s),z)
maps H; into itself, then every solution of '

Lu= f(u,z) in H

is in H;.

LEMMA 1.1. For —1 < b < 19 the problem
(1.3) Lu4+bu™=0 in H

has only the trivial solution u = 0.

We establish a prior: bound for solutions of (0.3), namely,

(1.4) Lu+4but =1+ kcosz + ¢h, (k>0)in H.

LEMMA 1.2. Let k > 0 be fixed. Let h € H with ||| = 1 and
a > 0 be given. Then there exists Ry > 0 (depending only on h and
) such that for all b with =1+ a < b< 19—« and all ¢ € [-1,1] the
solutions of (1.4) satisfy ||u| < Ro.

Proof. We shall apply Lemma 1.1. Assume Lemma 1.2 does not
hold. Then there is a sequence (by,,&n,u,) with b, € [o — 1,19 — af,
len| €1, ||un|| — oo such that

Ugy = L‘l(_l + kcosz +enh — bn”;t)-

Put w, = u_n Then
[[wall

1 k e
w, =L} (—~+-———cos:r+_nh_b-w+)'
8 lerall " Teea laall ™

The operator L™ is compact. Therefore we may assume that w, — wq
and b, — by € (—1,19). Since ||w,|| = 1 for all n, ||we|| = 1 and wy
satisfies

wo = L™ =bwt) or Lwe+bwd =0in H.

This contradicts to Lemma 1.1 and proves Lemma 1.2. O
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2. Existence of Solutions of a Nonlinear Suspension Bridge
Equation with a Constant Coefficient.

The main result in this section is the following.

THEOREM 2.1. Let h € H with ||h|| = 1 and 4 < b < 19. Then
there is €9 > 0 such that if |z| < o the equation (1.4) has at least two
solutions.

In other words, the equation (0.3) has at least two m-periodic so-
lutions. The proof of Theorem 2.1 requires several lemmas. First we
discuss the Leray-Schauder degree dps.

LEMMA 2.1. Under the assumptions and with notations of Lemma
1.2
drs(u— L™Y1 + kcosz — but 4+ ¢h), Bg,0) =1

for all R > Ry.
Proof. Let b= 0. Then we have
drs(u — L Y1+ kcosz + eh), Br,0) =1

since the map is simply a translation of the identity and since ||L=(1+
kcosz + eh)|| < Ry by Lemma 1.2. O

In case b # 0(—1 < b < 19), the result follows in the usual way

by invariance under homotopy, since all solutions are in the open ball
B g
The following lemma was proved by McKenna and Walter [11].

LEMMA 2.2. For —1 < b, the boundary value problem

21) yW4by=1 in (—g—,g) 5 (3‘:%) =y" (:I:%) =1

P4

has a unique solution y, which is even in w, positive, and satisfies

y' (—%) >0 and ¢ (—g) < 0. O
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We can obtain an easy consequence of Lemma 2.2.

LEMMA 2.3. Let k > 0 be fixed. For —1 < b the boundary value
problem
(2.2)
, T T T
y@ 4+ by =1+ kcosz in (—5, E) , Y (;}:é—) = y" (:Izé-) =0

has a unique solution y, which is even and positive. Also the solution
y satisfies
y' (_Ir;) >0 and Y (%) < 0.
Proof. The function

k
1+

y1 =y(2) — cos T

satisfies
(2.3) y%m 4+by; =1 in (—g-, g) ,
n (£2) =4t (£3) =0

By Lemma 2.2, we see that the solution y; is unique, even in @, positive,
and satisfies

v (h%) >0 and y; <0.

So the solution y is unique, even in z, positive and satisfies

y' (—g) >0 and y (%) 2 0: O

LEMMA 2.4. for —1 < b the boundary value problem

(2.4) y® oyt =14 kcosz in ( T W),

23
/(6) - (+) -
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has a unique solution.

Proof. The solution y of (2.2) is positive, hence it is also a solution
of (2.4). Uniqueness follows from the contraction mapping principle
in the following familiar way. The eigenvalues of My = Ay, where
M = D* with the boundary conditions is given in (2.2), are all > 1.
Hence for any ¢ < 1,

1
1—c¢
Any problem My = f(y,x) with ¢ < f, <1 — ¢ has a unique solution,
since solutions y are characterized by

y= (M —e)"[f(y,2) - cy],

where the right hand side is Lipschitz continuous with a Lipschitz con-
l—e—e
stant < —— < 1. O
le==g

(M =) =

The following lemma is the final step in the proof of Theorem 2.1.

LEMMA 2.6. Let 4 < b < 19. Then there exists v > 0, 9 > 0 such
that

dps(u — L™ Y1+ kcosz — but +¢h), B, (y),0) = -1

for || < eg where k > 0 and y is the unique solution of (2.4).

Now we prove our main result, Theorem 2.1.
Proof of Theorem 2.1. Equation (1.4) can be written in the form

Su:=u—L Y1+ kcosz —but +¢h) = 0.

The degree of Su on a large ball of radius R > Rp is +1 by Lemma
2.1. We know from Lemma 2.6 that the degree on the ball B,(y) is
—1. Choosing R > Ry so large that Bg C B,(y), we can conclude that

drs(Su, Br — By(y),0) = 2.
Therefore, the equation (1.4) has at least two solution, one in B4(y).

and the other one in Bg — B+(y). This conclude the proof of Theorem
2eke L
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3. The Suspension Bridge Equation under a Weak Condi-
tion.

In this section we investigate solutions of a nonlinear suspension
bridge equation under weak even condition

(3.1)
1
—:l-uum_ + g + Ygzge + buT =14 eh(z,t) in (—

u (ig,t) =3 [ (:I:g,?‘.) ==

u is w-periodic in ¢t and even in w.

)XR,

™ T
2 2

Let L be the differential operator

Lu = "'Zuftn';r + Uy + Ugaza-

The eigenvalue problem for w(x,1)

T

(3.2) Lu=)u in (—55) « R,

u (:I:g—,t) = U (:}:g—,t) =10,
u(z,t) = u(—=z,t) = u(z,t + )

has infinitely many eigenvalues
Moo = (Br 4+ 1)~ (Zn4-1)% +:4) T T

and corresponding normalized eigenfunction ¢pn, tPms (m,n = 0)
given by

2
bon = % cos(2n + 1)z for n2>0,
2
Gmn = —cos2mtcos(2n + 1)z for m>0,n>0,
T

2
Pin = — cos 2mtcos(2n + 1)z for m>0,n2>0.
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We note that all eigenvalue in the interval (—36,29) are given by

/\20 =-19 < /\10 =—4 < /\(m =1

Let Q be the square [ﬁzr_ Tr] X [H%,—g] and H the Hilbert space

2’8
defined by
Hy = {v € L*(Q) : u is even in x}.

We define a subspace H of Hy as follows;

{U- EHp:u= Z(hmn@bmn +’.'nm f;'{'m.n)q Z I)\m-n“h?nn +f)“,\2n_n) < OO}

with a norm :
lelll = [3= Pomal(hn + B20)]

Then this normed space is complete. The set of function {@mn, P mn}
is an orthonormal base in H.

Let V' be the 2-dimensional subspace of H which is the closure of
the span of the functions ¢y and 9, both of which have the same
eigenvalue Ajg = —4. Let W be the orthogonal complement of V' in H.

We first consider the uniqueness theorem when —1 < b < 4.

THEOREM 3.1. Let ||h|| =1 and —1 < b < 4. Then for small ¢ > 0
the equation

(3.5} Lu+but=14¢h in H

has a unique solution.
Proof. Let ||h]| =1 and —1 < b < 4. Let 6 =

is equivalent to

(VAU

. The equation (3.3)

(3.4) u= (L4687 =(b—86)ut —bu~ +1+ch(x,t)],

where (L + 8)7! is a compact, self-adjoint, linear map from H into H

with norm 3" We note that

I(b—6)(uf —uf)+6(uy —uy)|| < max{|b—6], 6} |lug—u1l < 2flug—1w.
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It follows that the right hand side of (3.4) defines a Lipschitz map-
1
ping of H into H with Lipschitz constant v < : X 2 = 1. Therefore,

by the contraction mapping principle, there exists a unique solution

ue Hof (3.4). O
The main theorem in this section is the following.

THEOREM 3.2. Let h e W, ||| =1, and 4 < b < 19. Then there
exists ¢ > 0 depending on b and h such that if || < £ equation (3.3)
has at least three solutions.

Let us define the functional I(u) on H, corresponding to equation
(3.3), as follows;

Ib(u)

1 1 b
— / [§ (—1ut|2 - Z|uw|2 - |umi2) + 3|u'|'|2 — u —eh(z,t)u| dtde.
Q &

Then I is continuous and Fréchet differentiable in H.
The solutions of (3.3) coincide with the critical points of Ij.

LEMMA 3.1. Let4<b< 19, h € W with ||h]|| =1, and let v €V
be given. Then for small ¢ > 0, there exists a unique solution z € W
of the equation

Lz+(I—-P)bv+2)T —1—¢h(z,t)] =0 in W.

If z = §(v), then 6 is continuous on V and we have DI(v+8(v))(w) =0
for allw € W. If I, : V — R is defined by I;(v) = Iy(v + 6(v)), then

I, has a contiunous Fréchet derivative DI, with respect to v and
DIy(v)(h) = DIy(v + 8(v))(k) forall heV.

If vy is a critical point of Iy, then vo + B(vo) is a solution of (1.4) and
conversely every solution of (1.4) is of this form. In particular 6(v)
satisfies a uniform Lipschitz condition in v with respect to the L*(Q)
norm (also the norm ||| - |||).
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The method of the proof of Theorem 3.2 is reduced to the prob-
lem in an infinite dimensional Hilbert space to an equivalent finite-
dimensional one via a variational reduction method (Lemma 3.1).
These methods were first used in [4], [8] and were afterwards extended
in [2], to the case we with to use. For the details of the proof of this
theorem, we can refer [6].
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