BASIC PROPERTIES OF BOUNDARY CLUSTER SETS

UN HAING CHOI

Let w = f(z) be a meromorphic function in the unit disc |z| < 1. Let $t_0 = e^{i\theta}$ be a fixed point on $\Gamma = \{z : |z| = 1\}$ and A an open arc of Γ containing t_0 . We suppose that E is a set of linear measure zero containing t_0 and contained in A. We associate with every $e^{i\theta} \in A - E$ an arbitrary curve Λ_{θ} in D terminating at $e^{i\theta}$ and the cluster set $C_{\Lambda_{\theta}}(f, e^{i\theta})$ of f(z) at $e^{i\theta}$ along Λ_{θ} . Clearly $C_{\Lambda_{\theta}}(f, e^{i\theta})$ is either a continuum or a single point. We define a new boundary cluster sat $C_{\Gamma-E}^*(f,t_0)$ of f(z) at t_0 as follows:

$$C_{\Gamma-E}^*(f,t_0) = \cap_{r>0} M_r$$

where M_r denotes the closure of the union $\cup C_{\Lambda_{\theta}}(f, e^{i\theta})$ for all $e^{i\theta}$ in the intersection of A-E with $|z-t_0| < r$. As an analogue of this definition we give the following definition. Let f(z) be a meromorphic function in a simply connected domain D, \widetilde{E} a D-coformal null set of prime ends of D such that E the union of impressions of prime ends in \widetilde{E} contains t_0 a boundary point of D. We associate with every accessible boundary point A with $P(A) \in \widetilde{D} - \widetilde{E}$ (\widetilde{D} is the set of all prime ends of D) an arc Λ at P(A) in D terminating at z(A) the complex coordinate of A and the cluster set $C_{\Lambda}(f, z(A))$ of f(z) at z(A) along Λ . We define a new boundary cluster set $C_{D-\widetilde{E},\{\Lambda\}}^*(f,t_0)$ of f(z) as follows

$$C^*_{\tilde{D}-\tilde{E},\{\Lambda\}}(f,t_0) = \cap_{r>0} M_r$$

where M_r is the closure of the union $\bigcup C_{\Lambda}(f, z(A))$ for all accessible point A with $P(A) \in \widetilde{D} - \widetilde{D}$ and z(A) in the disc $|z - t_0| < r$. Clearly we have

$$C^*_{\tilde{D}-\tilde{E},\{\Lambda\}}(f,t_0)\subset C_{\Gamma}(f,t_0)\subset C_D(f,t_0).$$

We state our main result:

Received July 2, 1994.

THEOREM. The following three statements are equivalent:

(A) Let D be a simply connected domain in the z-plane, which is not the whole plane, and t_0 a boundary point of D, \widetilde{E} a conformal null set of prime ends of D. If f(z) is meromorphic in D and bounded in the intersection of D with some neighborhood of t_0 , then

$$\lim_{z \to t_0} \sup |f(z)| = \lim_{z(\mathcal{A}) \to t_0, P(\mathcal{A}) \in \tilde{D} - \tilde{E}} (\inf_{\Lambda} (\limsup_{z \to z(\mathcal{A}), z \in \Lambda} |f(z)|)), \quad (1)$$

where Λ is an arc at an accessible boundary point \mathcal{A} with $P(\mathcal{A}) \in \widetilde{D} - \widetilde{E}$ and the convergence is in the ordinary Euclidean metric.

Furthermore, since the left hand side and the right hand denote the radii $r(\tilde{D} - \tilde{E}, \{\Lambda\})$ of the smallest closed discs with center at w = 0 which contain $C_D(f, t_0)$ and $C^*_{\tilde{D} - \tilde{E}, \{\Lambda\}}(f, t_0)$ defined using, $\{\Lambda : \Lambda \to z(\mathcal{A}), P(\mathcal{A}) \in \tilde{D} - \tilde{E}\}$, respectively, the above equality can be written in the form

$$r(D) = r(\widetilde{D} - \widetilde{E}, \{\Lambda\})$$

for any choice of $\{\Lambda : \Lambda \to z(\mathcal{A}), P(\mathcal{A}) \in \widetilde{D} - \widetilde{E}\}$. Hence, for fixed $\{\Lambda\}$ we may write

 $r(D) = r(\widetilde{D} - \widetilde{E}) \tag{2}$

We write $C_{\tilde{D}-\tilde{E}}^*(f,t_0)$ to denote $C_{\tilde{D}-\tilde{E},\{\Lambda\}}^*(f,t_0)$ for fixed Λ .

(B) If α does not belong to $C_D(f, t_0)$ (in place of the assumption that in (1) that w = f(z) is bounded in the intersection of D with some neighborhood of t_0), then (1) can be replaced by

$$\rho(C_D(f, t_0), \alpha) = \rho(C_{\tilde{D} - \tilde{E}}^*(f, t_0), \alpha)$$
(3)

where $\rho(S, \alpha)$ denotes the spherical distance of α from S.

(C) Let D be a simply connected domain in the z-plane which is not the whole plane, t_0 a boundary point of D, \widetilde{E} a conformal null set of prime ends of D. If f(z) is a single-valued meromorphic function in D, then

$$C_D(f,t_0) - C^*_{\tilde{D}-\tilde{E}}(f,t_0)$$

is open, that is,

$$\partial C_D(f, t_0) \subset \partial C_{\tilde{D} - \tilde{E}}^*(f, t_0),$$
 (4)

where ∂S denotes the boundary of a set S.

Proof. The following proof is a modification of the argument given in Noshiro [1] p. 17.

 $(A) \to (B)$: Suppose that α does not belong to $C_D(f, t_0)$ and consider the function W = F(z) obtained by composing a linear transformation

$$W = \frac{(1 + \overline{\alpha}w)}{w - \alpha} \quad \text{with} \quad w = f(z).$$

Then (2) holds for W = F(z), that is, the spherical distances of $W = \infty$ from $C_D(F, t_0)$ and $C_{\tilde{D}-\tilde{E}}^*(F, t_0)$ are identical. But since the linear transformation is a rotation of the Riemann sphere, we have (3).

 $(B) \to (C)$: Let M and N $(N \subset M)$ be two closed sets in the w-plane. If $\rho(M,w) = \rho(N,w)$ for any point w exterior to M, then we have

$$\partial M \subset \partial N$$
.

 $(C) \rightarrow (A)$: Obviously (4) implies (2). The proof of (A) was given in [2].

The above result can be used to simplify the proof of the following analogue of Noshiro's theorem [3].

THEOREM. Let D be a simply connected domain in the z-plane, which is not the whole plane, and let t_0 be a boundary point of D, contained in the union of impressions of prime ends in \widetilde{E} , a D-conformal null set. Let f(z) be single-valued and meromorphic in D. If $\alpha \in C_D(f,t_0)C_{\widetilde{D}-\widetilde{E}}^*(f,t_0)$ is an exceptional value of f(z) in a neighborhood of t_0 , then either α is an asymptotic value of f(z) at t_0 , or there exists a sequence of points z_n in the boundary of D converging to t_0 , such that α is an asymptotic value of f(z) at each z_n .

References

- [1] K. Noshiro, Cluster sets, Springer Verlag, Berlin, 1960.
- [2] U. H. Choi, A Curvilinear extension of Iversen-Tsuji's theorem for a simply connected domain, Proc. American Math.Soc. 64 No.1 (1977).
- [3] U. H. Choi, On the boundary behavior of analytic functions, Bulletin of the Korean Math. Soc. 26 No. 2 (1989), 165-168.

Dept. of Mathematics Education Hong-Ik University Seoul, 121–791, Korea