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A New Approach to Medial Axis Transformation of Obijects with Smooth

Boundary
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Abstract

Medial axis transformatfion is on important concept used in many engineering
applications. We propose a new approach fo medial axis transformation of 2D objects
with smooth boundary. Qur approach differs from the traditional ones: we construct
the medicl axis starfing from the inside points, while the previous algorithms started
from the boundary peints. As a result, previous algerithms are highly sensitive to the

small irregularities of the object's beoundary curve, while our approach is robust.

1. Introduction

There are various schemes to represent a
geometric object. Among them, an important
and useful approach to extract the structural
shape of an object is to reduce it to a graph,
An important concept used for this reduction
is the medial axis (skeleton) of the object.
Medial axis was first proposed by Blum[3].

Intuitively the medial axis of a 2-dimensional

object R with boundaty B is as follows. For
each point p in R, we find its closest neighbor
on B, If p has more than one such neighbor,
it is said to belong to the medial axis of R.
Naturally the concept of “closest” depends on
the definition of a distance, In this paper we
use the Fuclidean distance. Therefore each
point on the medial axis is a center of a
maximal-sized disk that is contained within the

shape,
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Medial axis transformation are used in many
_engineeting applications. Medial axis transforma-

ton extracts the most essential structural
features from the image data and represent the
image in 2 simple graph with nodes and edges.
This simple representation of the image is
valuable in problems such as identifying the
chjects in pattern recognition and storing the
image data in computet graphics. Medial axis
transformation is also necessary to find the
cffset curves in font design, rapid prototyping,
solid moedeling and NC machining. In fact, our
iaterest in the medial axis transformation came
from our work in designing Korean and
Chinese characters.

Although the medial axis of a plane object
vields a good characteristics for the structural
shape, direct implementation of that definition
has been known c¢omputationally prohibitive
because of the fact that implementation in-
volves calculating the distance from every
interior point to every point on the boundary
of the object. Numerous algorithms have been
proposed to produce a medial axis for digital
shapes. Montanari[4] desctibes an algorithm
for finding the medial axis of a shape whose
boundary can be piecewise approximated by
straight-line segments and circular arcs. Typi-
cally these algorithms are thinning algorithms
that iteratively delete edge points of a digitieed
region[5][6]. Also Lantuejoule[7] character-
ized medial axis transformation in terms of
morphological operations for digital shapes[8].

These previous works constructed the medial

axis from the boundary points either by
thinning algorithms or by emnating wave front
perpendicularly from the boundary points.
Thetefore their result was highly sensitive to
small irregularities of the object’s boundary
curve. However, our approach differs from the
traditional one: we construct the medial axis
starting from the inside points not from the
boundary points. We construct a series of
inscribed citcle, Then we reconstruct the
envelope of these circles. If this envelope is
close enough to the given object’s boundary

curve, that series of inscribed circles comprise

the medial axis transformation of the given

object, Our approach, starting from the inside,
produces a tobust result to the small irregular-
ities of the object’s boundary curve, We are
currently studying this stability ptroperties of
our approach in more details, In this paper we
assume that the objects have smooth boundary.
We are also working on the medial axis
transformation for objects with more general
shape,

In Section 2 we state the formal definitions
of medial axis transformation. Our definition is
slightly different from the tradittonal ones in
the sense that it searches the medial axis from
the inside of the object and cur definitions also
include the center point of the inscribed
osculating circles, In Section 3 we review the
ptoblem of sweeping a Z-dimensional object of
a fixed shape with algebtaic boundary curves.
As it turns out, we can get explicit formula

for the envelopes in the case of sweeping



gl Ho| Smoothd AH 2} Medial & HBPo]MY H2g H oy 573

circles. In Section 4 we describe how to
construct the medial axis transformation of
objects with smooth boundary. We start with
a finite number of points on the medial axis.
We reconstruct a sweep operadon which passes
through these data points. Our procedure
repeats these steps until the envelope of the
reconstructed sweep is close enough to the
boundary of the given object, Finally, in
Section 5 we make concluding remarks and

discuss further study,

2. Medial Axis Tansformation

Let @ be a bounded closed domain in R*
with pieéewise CH{k=1) boundary which has
only finitely many non-differentiable points.
Let B,(p) denote the closed disk of radius #
centered at p. We define the ordered set D(Q)
by

D(Q) ={B,(p)|B,(p)Q} (Eq. 2.1)

That is, D{Q) is the set of all disks
contained in Q.

Now we define the medial axis and the
medial axis transformation, Our definition is
slightly different from the original definition
by Blum[3].

DEFINITION 2.1. The CORE of a domain
Q is the set of all maximal disks in ), that is,

CORE(Q) ={B,(p) € D{(Q) |V B{¢) € D(Q),

B,(p)CB{q)impliesB ($) = B(g}}

DEFINITION 2.2. The MEDIAL AXIS of
a domain @ is the set of all centers of disks
in CORE(Q). That is,

MA{Q)={p€Q|B,{p) € CORE{(Q)}
DEFINITION 2.3. The MEDIAL AXIS
TRANSFORMATION of a domain  is the
set of all ordered pairs of cneters and radii of
disks in CORE{Q). That is,
MAT(Q) ={(p,) € @XR*U{0}| B,{#) € CORE((})}

Now let us exphin the geometric meaning
of the medial axis, Let d(p,g) denote the
distance between points p and g, In this paper
we use Euclidean distance, By using different
distance function, one get different medial axis,
The distance from a point pEQ to the
boundary 2@ will be denoted by d(p, 20},
that is, d{p, 20) = min ¢ 54 d(p.q).

Traditionally, the medial axis is defined to
be the set of point at which wave front
empating perpendiculatly from two or more
boundary points meet, Our definition of medial
axis differs from the traditional onel we
construct the medial axis starting from the
inside points, while the traditional tethods
start from the boundary and our definitions
also include the center point of the inscribed
osculating circles, Direct implementation of the
traditional definition of medial axis has been
known computationally prohibitive because of
the fact that implementation involves calculat-
ing the distance from every interior point to
every point on the boundary of the object.
Previons algorithms for constructing the medial
axis of an object are typically thinning algo-
rithms that iteratively delete edge points of a

digitized region[5](6]. Also medial axis
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transformation was charactetized in terms of
motphological operations. Howevert, these ap-
proaches are highly sensitive to small irregular-
ities of the object’s boundary curve, while our
approach is quite robust to the small pertuba-
tions of the object’s boundary curve, In this
paper we assume that the objects have smooth
boundary, We are currently investigating the
medial axis transformation for objects with
mote general shapes. We are also studying the
stability properties of our approach. Refer to
our forthcoming papers,

In the rest of the paper, for a medial axis

(a) circle

7

(c) rectangle

point P, let B(p) denote the corresponding
disk B,($) in CORE(Q). The distance d(p, 20)
is realized at the contact point of 2 B{p) with
20, That i for any g€ 20N 2B(p) d(p, 20)
=d(p,g). If the boundary 3@ has a circular
portion 2nd p is the center of the circular
portion, the distance d(p, 2Q) is realized at
every point in the circular portion, Thus the
distance can be realized at inﬁnfely many

boundary points on the contcact arcs.

(b) stadium

(d) letter T

Figure 2.1 shows the medial axis of some simple 2-dimensional objects.
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3. Envelope of a Family of Curves

Now we review the sweep operation which
is widely used in solid modeling, The sweep
operation is to generate a new solid by
sweeping a given object along a given space
curve trajectoty. The simplest sweep is linear
extrusion defined by sweeping a plane object
along its normal direction. Rotational sweep is
defined by rotating a Z-dimensional object
about an axis. Sweeps whose generating area
change in size, shape, or orientation as they
are swept along a given trajectory are called

general sweeps.[9]

Figure 3.1 Sweeping dynamicalty ¢hanging

circles

Consider the case of sweeping an object of
2 fized shape with algebtaic boundary curves,
Let Fy(x % ---x,) =0 be the boundary
equation of the object at time {. The boundary
of the swept area is called the ENVELOPE of

a family of curves, {Fj}, and constructing the

ENVELOPE is an important problem, The
simplest case is sweeping a colnstant-radjus 2-
dimensional circle along a plane trajectory, A
slightly more general case is sweeping a circle
whose radius dynamically changes with time
zlong a plane trajectory. Next Theotem states
that for these simple cases of sweeps, the exact
equation for the envelope can be found by

solving simultaneous algebraic equations.

THEOREM: Consider the case of sweeping
a 2-dimensional object of a fixed shape with
algebraic boundary curves. Let F(x,y,) =0 be
the boundary equation of the object at time f.
Then the ENVELOPE of F(xy}) is the set
of all (x,y) which satisfies the following
simultaneous equations:

Fxyit) =0,

an(xy,t) =0 (Eq. 3.1)

Proof:

A (d_x gy

Figure 3.2 Finding envelope of family of circles

Let (xy}) and (x+Axy+Ayi+Af) be
two points on the envelope infinitesimally close

to each other. Then F(xy,4) =0 and
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Flx+Axy+ Oy i+ Af) =0,
Now F(x+Axy+Ayt+As)=F(xyi)+

a—FAx+——yAy+—FAt+O((At)"') 0
By letting F{x,y,¢) =0, dividing each side by

‘Af, and letting A0, we get

aFdx+ 2 aF -0,

Jxdt aydt
2
Since ( F) is the gradient vector of
%0V Fax, aFd
2lax, oray_
tte boundary curve, _3:rdt+ 5y di 0.

2F
Thus we get a—z=0. QED.

Equation 3.1 gives a 2 simultaneous equa-
tions in terms of x,vf By eliminating the
variable #, we can get closed-form algebraic
equations in terms of x and y representing the
sweep boundary, Although in case of sweeping
a general object, ¢liminating ¢ is computation-
ally expensive, in case of sweeping a circle we
cen explicitly solve the simultaneous equations,
Now consider the case of sweeping a 2-

dimensional circle whose radius, #{¢}, changes

(adt), bit), r®)

dynamically as a function of time { and whose
center moves along the trajectory (a(2),5(1))
on the same plane,

In this case F{xyit)={x—a{s))*+
(y—b(t) ) —r(t)*=0.

So any point (x,y) on the sweep boundary
satisfies the following equations!:

Fxyp) = (x-a{t) P+ {y-() Y —r(t)* = 0.

2F_
2t

20 (8)(x—alt)) =2 (1) (y—4(0)}=2r (D)t} =0

Eliminating ¥, we get the following equation

for the sweep boundary:

x(1) =alt) +(-:z;(t)r(i)r’(t):l:r(t)b’(t)(a’z(r)+
B -r2(2) ) (@ (1) + b7 (2))

y() =)+ (& () () 2r(Da(e) (@) +
P —r2())) (@) ++7(1))  (Eq. 3.2)

4. Construction of Medial Axis
In this section, we propose a new approach

for constructing the medial axis of a 2D object

with smooth boundaty. A number of algo-

Figure. 4.1 Fitting (n+1) data points by spline functions



S g4do] Smoothd MA Y Medial = Wi Ma] 2L FH2 Iy 577

rithms are available for finding out a point on
the medial axis. So we assume that we have
found a finite number of points on the medial
axis to start with, Let {Po(ﬂu_bo),jﬁl(ﬁl,bl),“‘,

?,{a,b,)}be the n+1 points on the medial axis
and {#,#, +*7,}be the radii of their correspond-
ing maximal disks., Denote the maximal disk

centered at p.(a,b;) by B(p,). See Figure 4.1.

STEP 1. Given n#+1 data points on the
medial axis, {(ao‘bo,ro i a, bt IR (aﬂ,b",rﬂ 3,

11 compute the value of f for each data
point as follows, which is known as chord
length parametrization technique:

h=0, ;=8 +d(p,p,,) {i=1n),

where d(p,.,,p,) is a distance between two

points p,_ (4, ,b,,) and p’-(a;-,b,-)

XTI O é

O

(a) Finding o number of medial axls points

Figure. 4.2 Medial axis transformation for Korean character 7}

Now we propose the following method to

construct the medial axis transformation:

1.2 construct a natural cubic spline function

alt) that firs {(ayfy),(a,01), (45,0}
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() Reconstructing 7} from medial axis points

Figure. 4.2 Medial axis transformation for Korean character 7}

1.3 construct a natural cubic spline function
b{(z) that fits {{boh),(Bh), - (Dpty )}

1.4 construct a natural cubic spline function
#(£) that fits {{robe),(rd), o, (7, 0 )0

STEP 2. Substitute a(t), 5(¢), and #{¢) into
Eq. 3.2 to get the equation of the envelope
for the family of circles with radins 7(#) and
with the centet (a{£),5(1)).

STEP 3. If the equation for the envelope
ftom STEP 2 is “close” enough to the

boundary of the given object, then stop. We
have found apptoximate medial axis
{f’o(%_bn),Pl(ﬁl‘bl),‘“,P,,(ﬂ,,,b,,)}—

Otherwise, find another medial axis point

and repeat from STEP 1.

STEP 1 requires curve fitting of the data.
There are various curve fitting techniques one
can choose from. We chose natural cubic

splines with zero curvature at each end point.
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One problem in this case is thar the values of
{ for each data points are not known. We used
a common technique which computes the
succesive values of {; from the distance between
two succesive points, p, (a4, .0, ,) and p,(a,b;)
(see [10]). Now the parameters of natural
cubic splines functions can be easily computed
by solving a linear simultzneous equation
involving 2 matrix of tri-diagonal form by
Gaussian elimination,

STEP 2 was explained in details in Section
3. In STEP 3 we need 2 definition of the
distance of two functions to determine if two
functions are close to each other. one can use
the standard L? norms that define the distance
of two functions as follows:

ae) = §w—enyi

Now Figure 4.2 shows the implementation
results of our methods, As it is shown, our

methods produces the good result,
5. Conclusions

We propesed 2 new approach for construct-
ing the medial axis of a 2D object with smooth
boundaty, Our approach constructs a finite
number of inscribed circles, each time starting
from an inside point, We keep adding another
maximal disk until the envelope of the set of
inscribed citcles is close enough to the otiginal
boundary of the object, Previous works con-
structed the medial axis from the boundary
points either by thinning algorithms or by

emnating wave front perpendiculatly from the

boundary points. Therefore their result was
highly sensitive to a small irregularities of the
object’s boundary curve, However, our ap-
proach constructs medial axis from an inside
point, So our approach produces robust results
that ignote small perturbations of the boundary
curve and highlight only the essential strutural
features. We will investigate the stability
properties of our method and the medial axis
transformation for objects with more general

shape in the future,
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