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Abstract

This paper considers the problem of optimally designing accelerated degradation
tests in which the performance value of a specimen is measured only at one of
three test conditions for a given exposure time. For the product having
lognormally distributed performance, the optimum plan-low stress level and
sample proportion allocated to each test condition - is obtained, which minimize the
asymptotic variance of maximum likelihood estimator of a stated quantile at
design stress. An illustrative example for the optimum plan is given.

1. Introduction

Accelerated life tests which are generally used to shorten the lives of test
specimens or hasten the degradation of their performance, quickly provide
information about the life distribution of products at use condition through a
proper model. The performance of products will gradually degrade as the product
ages. For example, the breakdown strength of electrical insulation degrades on
age and temperature. Degradation processes of highly reliable products are
usually slow but can be accelerated under high stress environment. Such tests
are called accelerated degradation tests(ADTs).

In an ADT, test specimens are exposed to accelerated conditions and
performance values are recorded instead of lifetime at each accelerated test
condition, that is, specified exposure time and stress level. Data from ADTs are
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then used to gain insight into the physical mechanisms that underlie the
degradation process and to make inferences on the performance of the products af
use condition and at operation times far beyond the length of the testing. These
inferences imply extrapolation in two dimensions: stress and time.

ADTs have some advantages over accelerated life tests. The lifetime of a
specimen, which is defined as the smallest time when performance reaches =
reference value denoting the failure of products, can be gathered from
extrapolating performance data. For highly reliable products, such as integrated
circuits and lasers, the accelerated life tests provide little information since few
failures may be observed within a given test period, even at very high level of
stress. On the other hand, performance data from ADTs can be analyzed even
though no specimen fails. ADTs can yield good insight into the degradation
process and how to improve it. See for examples, Howes and Morgan(1981)
Nelson(1990), and Nash(1992). Nelson(1981) provided an Arrhenius model and
analysis for the hreakdown strength data of eclectrical insulation which are
measured only once at an accelerated test condition coupled with age and
temperature. Ballado-Perez(1986) suggested a statistical model for the ADTs of
adhesive-bounded wood composites. Carey and Koenig(1991) described an
experimental and analytic strategy to extract reliability information from
measuring the propagation delay of integrated logic devices submitted tc
accelerated conditicn. Lu and Meeker(1993) proposed statistical methods for not
accelerated but degradation tests using degradation values to estimate a lifetime
distribution for a “road class of degradation models. The optimum design of
ADTs having three experimental points which differ slightly from ours was
developed by Park(1993) using numerical searches method and also compared with
optimum accelerated life tests. Boulanger and Escobar(1993) provided optimum
design of ADTs under the assumption of sigmodal growth curve having random
measurement error

This paper considers the problem of optimally designing ADTs in which
performance value of a specimen having lognormally distributed performance is
measured only once at one of three test conditions including the measurements at
the beginning of tests, within a specified exposure time. The lognormal
distribution is widely used for the lifetimes of some products including electrical
insulation, semiconductors, diodes, and adhesives The ADT having three test
conditions, which follows the suggestions by Nelson(1990) and will be called 3-
point plan, is quite simple to apply it practically. Furthermore, our 3-point plan
yields good estimates of the mean log performance at time zero and the amount of
degradation till the given test period. The proportion of specimens allocated to
each test condition and low stress level of 3-point plan are determined to minimize
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the asymptotic variance of maximum likelihood estimator(MLE) of the 100*¢”
percentile of lifetime distribution at design stress which can be obtained from
performance data.

The ADT model is introduced in Section 2 and the estimation procedure and
optimization problem are described in Section 3. In Section 4, the optimum plan
for ADT model is presented and an illustrative example is given.

2. The Model

The following assumptions are made:

1. The distribution of performance value U (¢, ») of a specimen at exposure time
t and stress level s, is lognormal and U,, ¢=1, 2, -, n are independently
distributed. Thus the distribution of log performance ¥ = In U is normal.

2. The standard deviation ¢ of log performance Y is constant, i.e., independent
of exposure time and stress.

3. The relationship among the mean log performance u, exposure time / and
stress s, 1$

ult,s) = x—ﬂ*t*exp(—’;—y), t>0, >0, §>0, ¥>0. (D

This is called Arrhenius model.
It is also assumed that specimens are tested at only two accelerated stresses and
high stress is specified as the highest possible stress for which the assumed model
is expected to hold and the longest possible exposure time ¢* is pre-specified.
The following 3-point ADT plan for total test specimens # is considered:
1. Performance of nn, specimens randomly chesen from population are measured
at the beginning of the test and design stress s..

2. Performance of #n, specimens randomly chosen from population are measured
at exposure time ¢ (0<{<¢*) and low stress s..

3. Performance of #nnr, specimens randomly chosen from population are measured
at exposure time * and high stress s..

The object of an ADT for highly reliable products is to obtain performance data
in a limited time. In particular, the above 3-point plan is useful for the
experimenter who wants to carry qut the ADTs as simple as possible. The
performance data is extrapolated to estimate the lifetime distribution at design
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stress. The optimum 3-point plan specifies the optimum low stress, exposure
time and proportions n,, n, and n, (=1—n, —n,) allocated to each test condition.

3. Estimation Procedure

Let Y (¢, s) be the random variable denoting the log performance at exposure
time ¢ and stress ¢, and the lifetime T at stress s be a random variable denoting
the smallest time at which Y (¢, s) goes below a design value y, and failure of the

specimen occurs. The population fraction F (¢, s) failed at exposure time ¢/ and
stress s is the shaded fraction of distribution for Y (¢, s) as shown in (Fig. 1).
Since Y (¢, $) is normally distributed with mean u(¢, s) and variance ¢°. for >0,

Fit.s) = P[Y{t s)<y, )
:¢ 1(7 [ [yn ""1'+‘ﬂt exp(*?’/s)] ], (2)

where ¢ ( - ) is the standard normal distribution function. Therefore,

Fit.s)= { 0, if <0
lg it it 20, (3)

where p. = '(x—v Jexp(¥/s) and 6+ =f 'cexp(¥/s).
The lifetime 7 at stress s has a normal distribution with mean u: and variance o%.

% —p—te Vs

'Fig. 1) Distributions of log performance Y (t, s).
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Let p, be the probability that a specimen fails at the beginning of tests and
design stress s,. The value of p, may be very small because the event that the
performance value of a specimen at # =0 is below v, will be rare in practice. Even
though the value of p, is very small, optimum design would be affected by this
value. Furthermore, considering the existence of p, is valid because the
lognormal distribution of performance values in ADTs has left tail probability.
The relationship between o and p, is

A=Y, = - (J'Z‘( ;“)f )7 (4 !

th

where z(p,) is the p? quantile of standard normal distribution. The 100¢"

percentile of the lifetime distribution at design stress s,, say {,, is

t _ { Ov lf q<ﬁf
CoUp ey, +azlg)lexplYis,] i gzp; (5

The method of maximum likelihood can be used to estimate parameters a, §, »
and ¢ from performance data. The MLE of ¢,, say f,, is

{,=" |2y, +azq) ) exp[¥/s.], (6

where 3, 8, ¥ and ¢ are MLEs of o, §, ¥ and o, respectively.

The optimization criterion used in this paper is to minimize the asymptotic
variance of /, in (6, which is a function of MLEs of 4, 1}, ¥, & and 3 test conditions
(0, s.). (¢, s,), #* s ) and the proportions n., n,, 7. .

It is convenieni to define transformed stress x, =1/s;,, i=0, 1, 2 and the
standardized transformed stress 5= (x—x,) /(x, —2>). Then, y=0 for high stress
s. and n=1 for design stress s,.

We also define standardized exposure time r=¢/t*0<t<1). Then u({, s) in (1
may be written in terms of 4 and 1 as

wlr, my=x, - jlyrexpl —n¥, 5, (7

where parameters x,, f, and ¥, mean that

Xy T A,

B, =pt*exp| —x.¥,
Y, :'V(x“ =Xy (8\
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and scale parameter o, is equal to 0. The MLE of ¢, may be written as
tAq ::t*ﬁd‘] [ % =y, +a,2(@)]exp(7,) (9

where a,, ;§0, ¥, and &, are MLEs of a,, B4, ¥, and o,, respectively.

It is assumed that the independent random variable Y, (z, ), ¢=1, 2, ---, #n, are
identically distributed at the same test condition. The log likelihood L of an
observation y(1, ) at a transformed test condition (1, ) is

L=-Ings, - -1,— (A 4 constant, (10)
~ gy
where A=y—x,+f,1exp(—nY,). The second partial derivatives of the log

likelihood with respect to the model parameters are needed in order to obtain
variance-covariance matrix for the MLEs a,, /§O, Y, and &,. For a single
observation, the first derivatives are

(Tﬁ(ﬁL/@J):A, O'é(aL/aﬂU)z“‘[AeXp("ﬂ'yo ).
U‘F;((?L/a')/“)::HfﬁqAEXD(—‘rﬂ’o ). U(Z)(aL/aO‘(; )= "'0'(,|+U";1A2 . (11'

The following (1, #) for an observation will be Fisher information matrix
whose elements are negative expectations for the second partial derivatives.

1 1 (symmetric)
Fl, p)=(g,% ‘ -B B |
. upB  —up.B 4B.BF (12:
0 0 0 2 |

where B=texp! —yY,). Since nn, specimens are tested at the transformed test
condition (0, 1) and #x, specimens at (r, y) and #nn, specimens at (1, 0), Fisher

information matrix. F for our 3-point plan with a sample of #» independent
observations is as follows;

F=nn, FO, O+nn, Flr,n)+nrn, F(1, 0

oy Sus S, 0

=(mna,”  Fu, fu, Fu, 0 1
Fow Sy fu, 0 | (13
0. o 0 2 !
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where fll =1, f12=—(7l1B+7tz), fm:ﬂl?lﬁoB’
fzz :n(}}Z +x., .fza': ”nlﬂﬁoBz, and f:;a:nl(ﬂﬁoB)z.

The asymptotic variance-covariance matrix of the MLEs & §, ¥ and & is the
inverse of the Fisher information matrix. Let H be the row vector whose
elements denote the partial derivatives of #, w.r.t. parameters a,, 8,, ¥, and o,.
Then H can be obtained from (4) and (8) as follows:

H=tp,'exp(Y)) * [ 1, —af, ' (2(q@) —2(p,)), alzlq) —2(p,)), 2(q)] (14)
The corresponding asymptotic variance of t:, is of the form
Asvar(t,)=HF 'H' (15)

where the prime denotes a vector transpose.

4. Optimum Plan

4.1 3-point Optimum Plan

The asymptotic variance of fq depends on the model parameters «,, B,, ¥, and
a,. To obtain optimum design one must know the value of «,, ., 7, and ¢,, which
is impossible. Many authors(1l, 5, 11, 13) use pre-estimates of unknown
parameters to overcome such difficulties and obtain optimum plans. These pre-
estimates can be approximated from past experience, similar data, or a preliminary
test. Chernoff(1953) calls such plans “locally optimum” since they are optimum
only for the assumed or estimated parameter values.

Let p, and p, be the probabilities that a specimen will fail at maximum
exposure time ¢* at design stress x, and high stress x,, respectively. From (3)
and (4), we have

ptrexpl—x v]1=0lz(p,)—2(p,))
ptrexp| —x Yl=0lz(p,) —z(p,)) (16

resulting p, > p, and p,>p,. We have from the relationships (8),

a =Y, o 2 py)
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ﬁw =0y [Z(Ph) "'2(“[), ,‘/)]
Y. =In[(z(p, —2(p, ) (2(ps) —2(p, )] (17

The asymptotic variance of #, is a function of 1, 1, ns, 7,, and model parameters.
It can be shown that the optimum value of 1 minimizing the asymptotic variance is
1 provided p.<p. sq. This fact is coincide with our intuition that the larger is
the wvalue of 1, the more information about performance degradation can be
obtained. See Appendix for the proof.

Therefore, the following design problem is induced;

Given the values of q. pr, p. and p,, find the values of n.. n, and n minimizing

the asymptotic variance of t,.

The Powell method(1964) of conjugate directions for finding the minimum of a
function without using derivatives is used to solve the design problem. The
computer program of Jensen(1985) was modified and coded in FORTR AN and run
on an IBM PC compatible.

We have chosen the values p, =1%107°,2%10°°, 410 ° and p, =5*10 ', 1*10 "'
1.5%10 " and p, = (.01, 0.05, 0.1 because those are very small in practice. And w+
have also chosen the values ¢=0.1, 0.3, and 0.5.

We have obtained unique solutions of #, 7, and =, for the selected values p,, p..
p.. and ¢. The optimum values n*, #}, nt and Asvar*(t,) is in (Table 1). It can
be known by the numerical searches that 5 is not varied for any value of ¢, but the
analytic proof on this fact cannot be given because of complexity of (Al). It can
be also known that 1) the larger is the value of p., the smaller are the values of
7*. n*, p* and also the larger is the variance of {., and 2) the larger is the value of
.. the larger are the values of n%, n*, n* and also the smaller is the variance of .
and 3 the larger is the value of p,, the smaller are the values of =%, n* and
variance of f,. and also the larger is the value of t*, and 4) the larger is the value
of ¢, the smaller are the values of nf and also the larger are the value of =} and

variance of #,.

4.2 An illustrative example

Nelson(1981) gives measurement data on the dielectric breakdown strength of
insulation specimens. The performance of four specimens was measured at each
combination of four accelerated conditions (180°C, 225"C, 250°C, and 275"C) and
eight exposure times (1, 2, 4, 8, 16, 32, 48, and 64 weeks). Nelson obtained th
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values of MLEs § and 7 as 2.96%10" and 16652.6, respectively. For finding
optimum design, these values and 2=2.473, ¢=0.451 will be used as the pre
estimates of parameters. If the maximum exposure time t* is 64 weeks and the
value of exp(y,. is 2.0 KV in the ADTs, then the values of p, =4*%107", p, =5* 10"
and p,=0.10 are obtained from (16) and (17) using the pre-estimates. If a reliability
analyst want to minimize the asymptotic variance of tenth percentile of lifetirne

{ Table 1) Optimum plans for the given values of p,, p,, p, and g.

. — 7 v
| b, ~1%10° b =2%10" P =a%107
|4 b Da R e S " - e et S
n m, n V@) | ny bmpoop [ V) | ry m n |V,
01| 00005 | .353|.539 | 608 | 1636 |.369 529 | 475 2954 349|517 294 868
0001 | 405 | 552|789 | 93.0 |.390 |.541 657 | 148.1 374 |.530 | 507 | 2776
| 00015 | 421| 561915 67.2 | .405| 550 .778| 1027 | .389 538 | .628| 1765 |
|05 00005 | 357 | 545, .514 | 1228 | 349 |.535| 412| 2012 | 337 |.522 | 266 | 513.4 |
|10) | 0001 | .368 557 .637 | 767 |.360 548 |.541| 1115 |.351|.537 | 431| 186.4
| ol
|

. .00015 | .376 ‘ 566 | 717 | 59.1 |.367 | .555 | 621 | 816 | .358|.544 514 | 127.]
.10 .00005 1347 | 549 | 482 106.6 | .340 1539 .390 | 168.7 |.332|.525 256 | 409.:
,' .0001 | 354 | 561 | 589 | 68.6 | .348 1 551 |.504 | 96.6 | .341|.540 6 405 | 155.0
00015 | 359 | 569 | 656 | 53.9 |.353|.559 | .572| 731 |.347 | 548 .478| 108. ‘

: 01 00005 | 393 531 608 | 2643 |.376 | 523 | .475| 4854 | 354 | 513 .294 | 14525
| 0001 | 417|541 789 | 151.3 | 401|532 657 | 2452 | 382 523 507 | 468
00015 | 435 | 548 | 915! 1097 | .418 | 538 |.778 ' 170.9 399 | 520 | 628 | 299
05| 00005 | 369 | 535|514 | 199.0 | 358 | 527 | 412 | 3321 343 | .517 | 266 | 862.!
/30 0001 | 383! 5451638 1250 |.373|.537|.541| 1853 |.361 528 431 316.
| 00015 | 392 551,717 | 967 534 514, 2164
10 .00005 359 | 538 | .482 173.0 |.351 .530..390| 2789 | 339 519 .256 6889

000 370|547 589 1120 | 362 539 504 160.9 353 531 405 263

00015 377 553 656 88.3 | 369 | 545 | 572 122.2 537 1 478 185.]

.01 00005 397 | 527 | 608 | 3486 380 .520?475 645.1 |.356, 511 .294 | 1945.4
000 4231535 |.789 2004 . 657 | 327.3 |.386:.520 507, 63L
| 00015 442 541 | 915, 1459 | 423|533 | 778 | 2288 403 | 525 628 | 4043
|05/ .00005 374 |.531| 514 2631 |.363|.524|.412 4423 346 | 515 266  1157.
500 10001 389 | 530|638 1659 @ .379 |.532 | 541 | 247.9 K 524 .431| 426.
00015 399 | 544 717 | 1286 | 388 | .537 521[ 185.0 | 376 | 529 | 514 | 293.4

10| .00005 365 | 533 | 482 229.0 |.356 | .526 |.390 3719 |.342| 516 .256 925.4
0001 377 | 541 589 | 1488 |.368 | 534 | 504 2155 | 358 526 405 3567

| 00015 385 | 546 .656! 117.7 | .376 | .539 | 572 | 164.1 | .366 | .531 | .478  250.8

|
|
|-

. S

w
D
=

=N
<
[
[32]
[l
oo




38 EFAAGRy A239 A5 1995 39

distribution at design stress 150°C, the proportions for optimum allocation are n*
=0.332, nt =0.525, n* =0.143 and optimal low stress level n* is 0.256 from (Table 1).
When high stress is specified as 275°C(548°K), optimum low stress is 243°C
(516°K).

If 1000 test specimens are available for ADTs, then optimum test procedure is
that the performance of 332 specimens are measured at the beginning of the test
and design stress 150°C. and the performance of 525 specimens at 243"C and 143
specimens at 275"C are measured after 64 weeks. The asymptotic variance of
MLE for tenth percentile in this optimum design is 409.3.

5. Concluding Remarks

We have presented optimum ADTs in which the performance value of a test
specimen is measured only once at the one of three test conditions. We have
proved the fact that optimal exposure time at low stress is the maximum exposure
time under the condition p,<q. The low stress level and proportions to be
allocated at each test condition are determined numerically to minimize the
asymptotic variance of the MLE for the percentile of lifetime distribution at
design stress. The optimum ADTs can be used in a kind of destructive tests in
which the performance of a test specimen is measured only once at a particular
inspection time. The design problems for the cases where the performance of
specimens are measured at more than three test conditions and the performance
can be continuously monitored, should be solved in the future.

Appendix
Proof for 1 =1

From (15), we can obtain the following equation:

oo @ 1T o, 200 Q@ @ 1
WAsvar{t,) = — ) (—) =)+ —) (-~ ——— -1} ()
7( r’ﬁ(: T, B nﬂl B(‘, ﬂﬂ[) B
20 20 - 7. @ ., 1., m{zl@)
ST ST S TS ST g K (AL}
1 3. F ) +( . 1 5 1 'I) + 5 (Al)
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where B=1 x exp( —#¥,) and Q@ =0 * [2(¢) —2(p,)]. The variance in (Al) has an
unique minimum at

§ I-m @ Q.. N
B=(—)-—) (1———4—=—)"! (AZ)
Y]ﬁu m [8(} VI,BU J

because n, Asvar(t,) is the quadratic form for B! and the coefficient of B2 is

positive. If the B in (A2) is solved about r, then we have the following solution
for 1;

r= (142101 ——n—k-—n—’l) "exp(nY,)
m Q
_ Eﬂ;, z2(py)—2(q) 4 .
=(1+ - exp(r;)".)[lﬁ—-——-———z(q)_z(pf) nl (A3)

Since [z(p,) —z(q)]/[z(q)—2(p,)] <0, provided p,<q and the (1+x,%,>1 and
exp(n¥,) =1 in (A3), we have the fact that t>1. But t is bounded on [0, 1], and
so we conclude that ¢ =1, provided p, <gq.
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