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In this paper we define fuzzy quotient semigroups induced by fuzzy idea.ls and st.udy 
homomorphism between these fuzzy structures. 

1. Introduction 

Takashi kuraoka and Nobuaki Kuroki[2] has studied fuzzy quotient 
ring induced by fuzzy ideals using fuzzy equivalence relations and dis
cussed the relation between fuzzy quotient rings and fuzzy ide띠s . The 
aim of this paper is to define fuzzy congruence on a semigroup and to 
study a fuzzy quotient semigroup using a fuzzy congruence, a fuzzy quo
tient semigroup induced by fuzzy ideals and also to discuss homomor
plüsm and isomorphism between these fu zzi structures. 

2. Preliminaries 

ThIOughout this paper 5 denotes a semigroup. We recall some defi
nitions and results for the sake of completeness and add some properties 
of fuzzy ideals. 

D efini t ion 2.1. Let X be a nonempty set and μ be a fuzzy relation on 
X. T hen μ is called a fuzzy equi valence relation if 
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(i) μ(x ， x) = 1 for aIl x in X , (ii ) μ(x ， y) = μ(y ， x) for 외1 x and y in 
X , (iii) for aIl x and Y in X , 

μ(x ， y) ;:: SUPzEx min{μ(x ， z) ， μ (z ， ν)} = μ 。 μ(x ， Y) 

Let μ be a fuzzy equivaJence relation on X. We sh띠LI say that μ[a] is 
the fuzzy class corresponding to a. For each a E X , we denote μ[이(x) = 
μ(a ， x) for every x E X. The identity relation Jdx on X is defined for 
any x ,y in X as 

(0 if x -1 ν 
Jdx(x , y) = \ l1 if x = ν 

Given a fuzzy equivaJence relation μ on X , for each 0 in [0,1], two 
crisp relations on X are defined as follows. 

Definition 2.2 . A weak o- relation denoted by ω。 is defin ed on X as 
XWaY if and only if μ(X ， Y) 으 o and a strong a - relation denoted by aa is 
defined on X as xaay if and only if μ(x ， ν)>a， foranyx ， yEX. 

We caJI the fuzzy qu otient set, the set X /μ = {μ[미 a E X} , where 
μ is a fuzzy equivalence relation on X [2] . 

Lemma 2.3 . Let μ be a fuzzy equivalence relalion on a set X. Then 
(1) μ(a， b) = 0 if any only ifmin{μ[a] ， JL[b]} 三 0, 
(2) sUPaEXμ[a] 三 1, 
(3) μ씨 = μ[b] if and only if μ(a ， b) = 1, 
(4) there exists lhe suη'ection p : X • X/μ :x • μ[x ]. 

Definition 2 .4 (1) A fu zzy set 6 is a fu zzy semigroup in S if for x , y in 
S， 6(xν);:: min{6(x) ,6(y)}. 

(2) A fuzzy set 6 is a fuzzy left , right or two- sided ideal respectively 
in S if for all x , y E S 

6( xy) ;:: 6(y) , 
6(xν);::6(x) ， 

6(xy) ;:: max{6(x) ,6(y)}. 
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Note that the n ofany set offuzzy semigroups is a fuzzy semigroup and 
the n or U of any set of fuzzy left, right , or two~sided ideals, respectively, 
is a fuzzy left, right or two-sided ideaJ s. Moreover, η is a fuzzy ideal of 5 
if and only if the level set TJt = {x E 5 !TJ( x) 2': t} is an ideal of 5 for each 
t E [0,1]. 

Definition 2.5. Let η be a fuzzy 5et on a set X and 1 be a function 
defined on X. Then η ind uces a fuzzy set ηf on I( X) defi ned by 

,/ (ν) = SUPx Ef -1 (ν){η (x )} for alJ ν E I(X) 

and is caJled the image of η under 1. Similarly, if v is a fu zzy set on I(X) , 
then a fuzzy set on X can be defined through v f -

1 
(x) = v(f (x)) = vo/(x) 

for all x E X. where 0 is the composition of mapping5. vr ' is caJled the 
inverse image of v 

\Ve can prove that a homomorphic image of a fuzzy ideaJ is a fuz zy 
ide aJ without assuming the sup- property. 

Lemma 2.6. LeI 5 and 5' be tμ;0 semigroups and let 1 : 5 • 5' be a 
semigroup homom01'phism. 11 1 is surjective and Ó is a luzzy idεal 015 , 
then so is óf . 111/ is a luzzy ideal 015’ , then so is v f -

I 
• 

Definition 2.7. For a function 1 from a set X onto the set I(X) , a fuzzy 
set η of X is called I~ill뻐iant if TJ(x) = TJ(Y) whenever I(x) = I(ν) for 
all x ,y ill X 

The followillg theorem gives the correspolldellce betweell fuzzy semi. 
groups of 5 and fuzzy semigroups of homomorphic image of 5 

Theorem 2.8. JI 1 : 5 • I( 5) is a semigroup homomorphism, theη 
there is a one-to-one correspoηdeηce between 1 - invariant luzzy semi. 
groups 015 and lu zzy semigroups 011(5). 

lf 1 : 5 • 5' is a sernigro때 isomorphism (OlltO) and μ is a fuzzy 
semigroup of 5 , then μ is f-invarial1 t . Thus there is a one-to잉ne (0[

responde l1 ce between fuzzy semigroups of 5 a l1d fuzzy semigroups of 5'. 
This correspondence η <-+ TJf is called an isomorphism between fuzzy 
semigroups TJ and TJf. 
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Definition 2.9. Two fuzzy semigroups (5, '7) a끄d (5’,'7’) are said to 
be isornorphic if there exists a rnapping f 5 • S’ such that f is a 
sernigroup isomorphisrn and that '7’ 。 f= η. 

3. Fuzzy congruence relation 

Now, we deβ ne a fuzzy congruence relation on a semigroup 5. 

Definition 3.1. A fu zzy relation μ 。n 5 is said to be left [rightJ com
patible if for any x , y , a E 5， μ(ax ， aν) ~ μ(x ， y)[μ(xa ， ya) ~ μ(x ， ν)]， and 
compati ble if μ is both left and right compatible. A compatible fuzzy 
eq ui vaJence relation on a semigroup 5 is called a fu zzy congruence. 

Note that the n of any fuzzy congruence relation on 5 is a fuzzy 
congruence relation. 

Theorem 3.2. lfμ is a fuzzν congruence relatíon on 5 , then the following 
are crisp congruence relations on 5 

(i) w" for each a E [0, 1J , 
(ii) <1" for each a E [0,1) 

Proof (i) Let 0:::; a :::; 1. For each x E 5， μ(x ， x) = 1 ~ a . Hence xω"x. 

xωaν implies μ(x ， y) ~ a and so μ(y ， x) = μ(x ， ν) ~ a implying νι‘"x. 

Suppose xw"y and yw"z. Then μ(x ， z) = (μ 。 μ)(x ， z) = sup，(μ(x ， t ) ^ 
μ(t ， z)) ~ μ(x ， ν)^ μ(ν ， z) ~ a^a = a. Finally， if xω"y then μ(x ， y) ~ a 
T hus, μ(ax ， ay) ~ μ(x ， y) 으 a implies axω。aν Moreover μ(xa ， ya) ~ 
μ(x ， y) ~ a implies xaω。ya for any a in 5. Similarly (ii) is proved. 

Theorem 3.3. Let 5 be a semigroup and let μ be a fuzzy congruence on 5. 
Then 51μ is a semigroup under multiplication de.βned by μ[sJ *μ[tJ = μ[ stJ 
for any s, t in 5 and p : 5 • 51v is a homomorphísm. 

p，에 By Lemma 2.3, (3), μ(x ， y) = 1 if and only if μ[xJ = μ[yJ . Let 
μ[x J = μ[x’ J and μ[yJ = μ[y'J. Then μ(x ， x’) = 1 and μ(y ， y’) = 1. 
We claim that μ (xy ， x’y’) = 1. For μ(xy ， x’ y) > μ(x ， x ’ ) = 1 and 
μ(x ’ y ， x’ y’) 으 μ(y ， y’) = 1. Since μ(xy ， x ’ ν’) ~ (μ 。 μ)(xν ， xν) = 
sup，{μ(xy ， z) ， μ (z ， x ’ y’)} = 1. Hence μ[xyJ = μ [x ’ y’ J. lt is clear th at 
thi s multiplication * on 51μ is associative. Furthermore, there exists the 
surjection p 5 • 51μ x • μ[xJ. Since p(x) * p(ν) = μ[매 * μ[yJ = 
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μ[xyJ = p{ xy) ,p is homomorphism. 
1t is useful to observe that if μ is a fuzzy congruence on S , and m and 

m* are the multiplications on S and S Iμ resp. Then m* is the unique 
multiplication on SIμ such that the following diagram comrnutes 

SIμ x SIμ 루 SIμ 

pT pT pT 

SxS.!!!...S 

Theorem 3.4. Let S be a semigroup, 6 a fuzzy ideal of S, and μ*(x ， y ) = 
(6(x) ^ 6( y))V 1ds(x ,y), for allx ,yinS. Then μ* is a fu zzy congruence 
on S. 

Proof. 1t is clear that μ is reflexive and symmetric. 
Now, if x = y, then (μ· 。 μ*)(x ， ν) = 1 = μ끼x ， ν) ， and if x # y, then 

(μ· 。 μ*)(x ， y ) = sup，(μ*(x ， z) ^ μ‘ ( z ， y)) 

= supz({(6(x) ^ 6(z)) V Ids(x ,z)} ^ {(6 (z) ^ ó(y)) V Ids(z ,y)}) 

으 {6(x)^6 (y)} = μ*(x ， y) 

Thus μ is transitjve 

Now we show that μ is compatible. For all a in S, μ*(ax ， ay) = (6(ax)^ 
6(ay )) V Ids(ax , ay). If ax = ay , then it is clear. If ax # ay , then 

μ* ( ax ， ay) = (6(ax) ^ 6(ay)) V Ids(ax ,ay) 

:::0: (δ(x)^6(y)) = μ(x ， y). 

Thus μ is a fuzzy congruence on S 

Theorem 3.5. Let f : S --> S' be a semigro내'P (on to) homomorphism. 
Let 6, η be a fuzzy ideals of S and S’ , πspectively， such that 61 C η Then 
there is a homormorphism of semigroups r : S16* -• S' IrJ" such that the 
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diagmm 
f 

S -• S’ 

5/ó' • S’/η‘ 

is commutative, where 

ó*(x , ν) = (ó(x)^ó(ν)) V Ids(x , y) γ x ,y E 5, 
1)'(x ,y) = (1)(x) ^ 1)(y)) V Ids'(x , ν) γ x , ν E5’ 

Proof By Theorem 3.4, Ó' and 1)' are congruences on 5 and 5' , respec
tively, and we note that Ó' [X1 J = Ó' [X2J if and only if Ó' (X1 ,X2) = L 
Suppose that ó' [xd = Ó'[X2J . lf X1 = X2 , then clearly 1)'(f(x.) , f (X2)) = 
L If X1 i' X2 , then ó(x.) ^ Ó(X2) 1 since Ó'(X"X2) = J. Then 
1)(f(x.)) ^ η(f(X2)) ~ ó(x]) ^ Ó(X2) = 1 and hence η'(f(x I)， f(X2 )) = L 
Thus J* is well- defined. It is easily seen that J* is a homomorphism 

Theorem 3.6. Let f : 5 • S’ be a homomorphism. Let Ó,1) be fu zzy 
ideals of 5 and 5' , respectively. Assume 1)r' = Ó. De.껴ne Ó' ‘ (X ],X2) = 
(ó(x I) ^ Ó(X2)) V Ids’ (f (X1) , f (X2)) ' Then ó" is a fuzzy congruence on 
S 

Proof. It is clear that ó" is reßex.i ve and symmetric . Now, 

(ó" 0 ó")( X1 , X2) = sup( ó"( X1 , z) ^ ó"( z, X2)) 

If x] = X2 , then (ó" 0 Ó")(X1,X2) = Ó"(X1 ,X2) = L If x] i' X2 and 
f(x11 i' f (X2) , then 

(ó" 0 ó")(X] ,X2) 

= sup({(ó(x I) ̂  ó(z)) V Ids' (J(x.) ,j(z))} ^ {(ó(z) ^ Ó(X2))} 

V Ids,(f(z) ,j(x2))}) 

~ (ó(x.) ^ Ó(X2)) V Ids ’(f(X I), f (X2)) = ó"(x1 ,x21 
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If Xl t= X2 and f (xd = f(X2) then W' 0 5")(x t, x2) = 5" (Xl ,X2) = 1. 
Finally, 

5" (axl ,ax2) = (5(axl) ^ 5(ax2)) V Jds ’ (f(axd ,f(ax2)) 

으 (5(Xl) ^ 5(x2)) V Jds' (f(axd ,f(ax2)). 

If f (aXl) = f (ax2 ), then it is clear that 5" (axl ,aX2) 으 5"(Xl ,X2). If 
f (axd t= f (ax2 ), then 

5"(axl ,ax2) = (5(axd ^ 5(ax2)) 

~ (5(X l ) ^ 5(x2)) = 5"(Xl ,X2). 

Similarly 
5"(xla ,x2a) ~ Ó"(Xl ,X2). 

Thus 5" is a fuzzy congruence on 5 

Theorem 3.7. Let f ; 5 - 5 ’ be a onto homomorphism. Let Ó, 1) be 
fuzzy ideals of 5, 5 ’ , resp . Assume r/- I 

= ó. Then 5/ ó" 은 S ’ /1) ' holds. 

Proof. By the si rrùlar method as in Theorem 3.5, the mapping f “ . 
5/ó" • 5/η‘ is onto homomorphism . To show that f" is injective. 
Suppose 7)'[Yl] = 7)‘ [Y2] for any ν1 ， Y2 in 5 ’. Since f is onto, there exist 
Xl and X2 in 5 such that f( xtl = Yl and f( X2) = Y2. If Yl ν2 then 
Ó"(Xl , X2) = 1. Hence ó"[xl l = ó'‘ [X2]. If Yl i Y2 then 

Ó" (X }, X2 ) = (Ó(Xl) ^ Ó(X2)) V Jds’(f(xd , f (X2)) 

= ó(x J) ^ 5(x2) = ,.,(f(x t}) ^ ,.,(f(X2) ) 

= η' (Yl ， Y2) = 1 

This completes t he proof. 
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