KYUNGPOOK Math. J. 35(1995), 85-91

Convergence in Frames

Sung Sa Hong
Department of Mathematics, Sogang University, Seoul 121-742, Korea

(1991 AMS Classification number : 0699 54A99 54D99)

Using covers of a frame, we introduce a concept of convergence of filters in a frame
and then characterize compact regular frames by convergence of maximal filters. We
also introduce strict extensions of a frame associated with sets of filters in the frame
and construct a zero-dimensional compactification of a zero-dimensional frame by the

strict extension associated with the set of non-convergent maximal Boolean filters.

0. Introduction

It is well known that the data of convergence of filters in a topological
space completely determine the structure in the space and that the theory
of frames generalizes that of topological spaces. Frames (= complete
Heyting algebras = locales) are also called pointless topological spaces.
Although there are no points in frames, there is a possibility to introduce
convergence in a frame. The neighborhood filters in a topological space
correspond completely prime filters in the frame of the open set latiice
of the space, so that one can introduce convergence in a frame using
completely prime filters ([6]). In the theory of nearness spaces, one can
determine the convergence of filters in a nearness space by its covering
structure ([4]).

The purpose of this paper is to introduce a concept of convergence of
filters in frames by covers and study its basic properties.

In the first section, we define that a filter I in a frame L is convergent
(clustered) if every cover S of L meets F (sec F, resp.). This clearly
generalizes convergent filters or filters with cluster points in a topological
space. We show that a regular frame L is compact if and only if every
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maximal filter in L is convergent.

The second section concerns strict extensions of frames. Banaschewski
defines two extreme cases of extensions of topological spaces i.e., simple
and strict ones ([1]). He aslo has a good deal results on compactifica-
tions of frames ([2],[3]). For the simple extensions of frames, we refer to
([5], [8]). Using simple extensions and the right adjoints, we introduce a
concept of strict extensions of frames. We show that a zero-dimensional
frame is compact if and only if every maximal Boolean filter is convergent,
where a Boolean filter is a filter generated by its complemented elements.
Using this and strict extensions, we construct a zero-dimensional com-
pactification of a zero-dimensional frame.

For the terminology, we mostly refer to [7].
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1. Convergence in frames

We first recall that a frame is a complete lattice L in which the dis-
tributive law

aA\/S:\/{a/\s:sES}

holds for any @ € L. and § C L and that a map between frames is a frame
homomorphism if it preserves finite meets and arbitrary joins.

In the following, the top and bottom of a frame will be denoted by
e and 0, respectively and a filter in a frame always means a proper filter
i.e., a filter which does not contain the bottom 0. For a subset F of a
frame L,sec F = {z € L: forany e € F,aAz # 0} and forany z € L, z~
denotes the pseudocomplement of z. By a cover of a frame L, we mean
a subset S of L. with \/S = e¢. We say that for A, B C L, A refines B if
for any a € A, thereis b € B with a < b. It is clear that if a cover A of L
refines B, then B is again a cover of L.

We also recall that a filter F in a nearness space (X, £) is convergent
if and only if for any member A of the associated covering structure pu,
F N A#Dand that a filter F in (X, £) has a cluster point if and only
if for any A € p, sec F N A # 0 (see [4] for the details). In particular, a
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filter F in a topological space X is convergent if and only if for any open
cover A of X, F meets A, and it has a cluster point if and only if for any
open cover A of X, sec F meets A.

Using this, we introduce a concept of convergence in a frame as follows.

Definition 1.1. A filter F in a frame L is said to be
1) eonvergent if for any cover S of L, F meets S,
2) elustered if for any cover S of L, sec F meets S.

Remark 1.2. 1) Every completely prime filter in a frame L is convergent
and a convergent filter F in L is clustered, for F C sec F.

2) A filter containing a convergent filter is convergent and a filter
contained in a clustered filter is clustered.

3) By 1) and 2), a filter containing a completely prime filter is con-
vergent. If the frame L is Boolean, then every convergent filter is a
completely prime filter. Let L be a chain of the interval [0, 1] added with
the top e, then the filter {1,e} is convergent but not a completely prime
filter.

4) A maximal filter in a frame L is convergent if and only if it is
clustered, because sec F' = F for a maximal filter F.

5) Let B be a base for a frame L, i.e., for any z € L, there is a subset
C of B with # = \/C. Then a filter F is convergent (clustered) if and only
if for any C C B with YC = e, F (sec F, resp.) meets C.

Proposition 1.3. A filter F in a frame L is clustered if and only if
Viz* 12 € Fi#e.

Proof. Suppose that \/{z* : z € F'} = e, then by the assumption, there
is an z € F with 2™ € sec I, which is a contradiction. For the converse,
assume that there is a cover S of L such that sec F N S = (), then for any
s € S, there is #; € F with s A 2, = 0; hence s < 2%, so that S refines
{z* : 2 € I'}, which is again a contradiction.

We recall that a frame L is almost compact if for any cover S of L,
there is a finite F C § with (VF)* = 0. It is known that a frame L is
almost compact if and only if for any filter F in L, \/{z* : 2 € F'} # e and
that a regular frame is almost compact if and only if it is compact ([5],
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[8]). Thus the following are immediate from the above proposition.

Corollary 1.4. For a frame L, the following are equivalent:
1) L is almost compact.
2) Every filter in L is clustered.
3) Every mazimal filter in L is convergent.

Corollary 1.5. For a regular frame L, the following are equivalent:
1) L is compact.
2) Every filter in L is clustered.
3) Every mazimal filter in L is convergent.

Let f: L — M be a frame homomorphism. Then for any filter F
in M, f~1(F) is again a filter in L. Moreover, if f is dense, i.e., f(a) =0
implies @ = 0, then for any filter F in L, f(F) is a filter base in M.
Furthermore, if f is dense onto, then f(F) is a filter in M. We recall that
a frame homomorphism f: L — M is codense if f(a) = e implies a = e.

Proposition 1.6 Let f : L — M be a frame homomorphism.

1) If F is a filter in M which is convergent (clustered), then f~(F) is
also convergent (clustered, resp.) in L.

2) Assume that f is dense, codense and onto, and a filter F in L is
convergent (clustered), then f(F) is also convergent (clustered, resp.) in
M.

Proof. 1) Take any cover S of L, then f(S) is clearly a cover of M; hence
F Nf(S) # 0 (sec F Nf(S) # 0. resp.). Pick s € S with f(s) € F (f(s) €
sec F, resp.), then clearly s € f~Y(F) N S (s € sec f~!'(F) N S, resp.).

2) Suppose S is a cover of M, then f~(S) is again a cover of L, for f
is onto, codense. Therefore, thereist € f~1(S)NF (t € f~1(S) N sec F,
resp.), which implies f(t) € SN f(F) (f(t) € S N sec f(F), resp., because
f is dense).

2. Strict extensions of frames

In this section, we introduce a concept of strict extensions of frames
and then we construct a zero-dimensional compactification of a zero-
dimensional frame.
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In what follows, X denotes a set of filters in a frame L and P(X) the
frame of the power set lattice. Furthermore, we let

sxL={(z,2)e Lx P(X): forany F € £,z € F}

and let s : syL — L be the restriction of the first projection to sxL.
Then sxL is a subframe of the product frame of L and P(X) and s is
an open dense onto frame homomorphism, which is called the simple
extension of L with respect to X (see [3], [8] for the detail).

Let s* denote the right adjoint of s, then s*(z) = (z,X;) for any z €
L, where ¥, = {F € X : 2 € F}. Clearly, s*(L) is closed under finite meets
in syL and let ¢xL be the subframe of sy L generated by s*(L). Then txL
= {V{(z,%;):z € A} : ACL}. Let t: tyL — L be the restriction of
s to tx L, which is clearly a dense onto frame homomorphism.

Using the above notation, we now define the following.

Definition 2.1. The frame homomorphism ¢ : {xL. — L or tx L is called
the strict extension of L with respect to X.

Remark 2.2. Let L be a frame Q(E) of the open set lattice of a topological
space E and {T, : y € E'} a family of open filters in E which extends the
family of open neighborhood filters of E. Let X = {T, : y € E' — E}, then
tx L is precisely the open set frame of the strict extension of the space E
with respect to {T, : y € E'} in the sense of Banaschewski ([1]).

In the following, let C(L) denote the set of complemented elements of
a frame L and we recall that a frame L is zero-dimensional if C(L) is a
base for L. For any z € C(L), z’ denotes the complement of z.

Definition 2.3. A filter F in a frame is said to be Booleanif it is generated
by F N C(L), i.e., for any z € F, there is a complemented element y € F
with y < z. By a mazimal Boolean filter, we mean a Boolean filter which
is maximal in the set of Boolean filters in L with the inclusion.

We note that a filter on a topological space E is a clopen filter if and
only if it is a Boolean filter in Q(E).

Proposition 2.4. For a zero-dimensional frame L, the following are
equivalent:
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1) L is compact.
2) Every Boolean filter in L is clustered.
3) Every mazimal Boolean filter in L is convergent.

Proof. 1) = 2). It is immediate from Corollary 1.4.

2) = 3). We note that a Boolean filter in L is maximal if and only if
sec ' N C(L) C F. Thus the implication follows from 5) of Remark 1.2,
for C(L) is a base for L.

3) = 1). Suppose that there is a cover S of L. which does not have a
finite subcover. Let T = {t € C(L) : t < s for some s € S}, then T is
a cover of L, which does not have a finite subcover. Thus {z' : z € T}
generates a Boolean filter, which is denoted by F. Let G be a maximal
Boolean filter containing F. By the assumption, G is convergent, so that
GNT#Q. Pickte GN T, then t,t' € G, which is a contradiction.

In the remainder of the section, L is always a zero-dimensional frame
and X is the set {F : F is a non-convergent maximal Boolean filter}.
Furthermore, s*(C(L)) = {(z,X;) € txL : 2 € C(L)}.

Lemma 2.5. s*(C(L)) is contained in C(tx L) and is closed under finite
meets in tx L. Furthermore, s*(C(L)) generates ty L.

Proof. The first part follows from the fact that for any maximal Boolean
filter F and any z € C(L), z € F or 2’ € F, and the second half is trivial,
for C(L) is closed under finite meets in L. We note that for any a € L,
(a,Z;) = V{(z,Z;):2 € C(L) N | a}, because L is zero-dimensional and
X consists of Boolean filters. Thus #xL is generated by s*(C(L)).

Notation 2.6. The extension { : ¢t yL — L will be denoted by ( : (L —
s

Using this notion, we have the following:

Theorem 2.7. (L is a zero-dimensional compact frame and hence { : (L
— L is a zero-dimensional compactification of L.

Proof. 1t follows from the above lemma that (L is zero-dimensional. It
remains to show that it is compact. Take any maximal Boolean filter
¥ in (L, then {(¥) is also a Boolean filter, for { is a dense, onto frame
homomorphism and {(C({L)) € C(L). It is easy to show that s*(sec {(¥)
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N C(L)) C C(¢L) nsec ¥ C ¥; hence ((¥) is a maximal Boolean filter
in L. Suppose that {(¥) is convergent in L. Let ® = {a € (L : 3 < 3 for
some 3 € (T(¢{(¥)) N C(¢CL)}, then it is a Boolean filter in (L containing
V. Therefore, ¥ = &. By Proposition 1.6, (7'({(¥)) is convergent and
since (L is zero-dimensional, ¥ = & is also convergent in (L. Now suppose
that {(¥) is not convergent, then {(¥) € X. Take any cover S of (L with S
C s™(C(L)) which is a base for (L. Let p : (L. — P(X) be the restriction
of the second projection of L. x P(X), which is a frame homomorphism.
Thus p(S) is a cover of P(X); ((¥) € p((z,X;)) = X, for some (z,X,) €
S. Hence there is @ € ¥ with {(a) = z, so that a < (*(z) = (z,X;).
Thus (z,E;) € S N ¥; therefore ¥ is convergent in (L. This completes
the proof.
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