On Hom(- , -) As BCK/BCI-Algebras

Young Bae Jun
Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea

Jie Meng
Department of Mathematics, Northwest University, Xian 710069, P.R. China

(1991 AMS Classification number : 06F35, 03G25)

We investigate some properties of $\operatorname{Hom}(-,-)$ as $\mathrm{BCK} / \mathrm{BCI}-\mathrm{algebras}$, and discuss some ideal structure in $\operatorname{Hom}(-,-)$.

1. Introduction

This paper is a continuation of [14]. Iséki and Thaheem [13] proved that if X is an associative BCI-algebra then $\operatorname{Hom}(X)$, the set of all homomorphisms on X, is again an associative BCI-algebra. Aslam and Thaheem [1] proved that if X is a p-semisimple BCI-algebra then $\operatorname{Hom}(X)$ is a p-semisimple BCI-algebra. Hoo and Murty [7] and Deeba and Goel [3] independently showed that $\operatorname{Hom}(X)$ may not, in general, be a BCIalgebra for an arbitrary BCI-algebra. In view of this result we can also see that $\operatorname{Hom}(X, Y)$, the set of all homomorphisms of a BCI-algebra X into an arbitrary BCI-algebra Y may not be a BCI-algebra in general. However Deeba and Goel [3] proved that if X is a BCI-algebra and Y is a BCK-algebra then $\operatorname{Hom}(X, Y)$ is a BCK-algebra and hence a BCI-algebra. Liu [16] showed that if X is a BCI-algebra and Y is a psemisimple BCI-algebra then $\operatorname{Hom}(X, Y)$ is a p-semisimple BCI-algebra. In [14] we discussed the orthogonal subsets of BCI-algebras, and investigated their properties which are related to some ideals. In this note we
(Received : 15 February 1993)
investigate some properties of $\operatorname{Hom}(-,-)$ as BCK/BCI-algebras.

2. $\operatorname{Hom}(-,-)$ as BCK/BCI-algebras

Recall that a BCI-algebra is a nonempty set X with a binary operation * and a constant 0 satisfying the axioms;
(1) $\{(x * y) *(x * z)\} *(z * y)=0$,
(2) $\{x *(x * y)\} * y=0$,
(3) $x * x=0$,
(4) $x * y=0$ and $y * x=0$ imply that $x=y$,
(5) $x * 0=0$ implies $x=0$,
for all $x, y, z \in X$. If (5) is replaced by (6) $0 * x=0$, then the algebra is called a BCK-algebra. A partial ordering \leq on X can be defined by $x \leq y$ if and only if $x * y=0$. A BCI-algebra X is said to be associative([8]) if $(x * y) * z=x *(y * z)$ for all $x, y, z \in X$. Let X_{+}be the BCKpart of a BCI-algebra X, that is, X_{+}is the set of all $x \in X$ such that $x \geq 0$. If $X_{+}=\{0\}$ then X is called a p-semisimple BCI-algebra([15]). A mapping $f: X \rightarrow Y$ between BCK/BCI-algebras X and Y is called a homomorphism if $f(x * y)=f(x) * f(y)$ for all $x, y \in X$. Define the trivial homomorphism 0 as $0(x)=0$ for all $x \in X$. Denote by $\operatorname{Hom}(X, Y)$ the set of all homomorphisms of a BCK/BCI-algebra X into a BCK/BCIalgebra Y. A BCK-algebra X satisfying $(x * z) *(y * z)=(x * y) * z$ for all $x, y, z \in X$ is said to be positive implicative([12]). If, in a BCKalgebra $X, x *(y * x)=x$ holds for all $x, y \in X$, then it is called to be implicative ([12]). It is shown in [12] that any implicative BCK-algebra is positive implicative.

Lemma 1. ([12]) A BCK-algebra X is positive implicative if and only if $x * y=(x * y) * y$ for all $x, y \in X$.

Theorem 1. Let X be a $B C I$-algebra and Y be a positive implicative $B C K$-algebra. Then $\operatorname{Hom}(X, Y)$ is a positive implicative BCK-algebra.
Proof. From Lemma 1 we only need to show that $(f * g) * g=f * g$ for every $f, g \in \operatorname{Hom}(X, Y)$. Let $f, g \in \operatorname{Hom}(X, Y)$ and $x \in X$. Since Y is positive implicative, we have $((f * g) * g)(x)=(f * g)(x) * g(x)=(f(x) * g(x)) * g(x)=$ $f(x) * g(x)=(f * g)(x)$. This means that $(f * g) * g=f * g$, and the proof is completed.

Theorem 2. If X is a $B C I$-algebra and Y is an implicative $B C K$-algebra then $\operatorname{Hom}(X, Y)$ is an implicative $B C K$-algebra.
Proof. Let $f, g \in \operatorname{Hom}(X, Y)$ and $x \in X$. Then $(f *(g * f))(x)=$ $f(x) *(g * f)(x)=f(x) *(g(x) * f(x))=f(x)$, because Y is implicative. Hence $f *(g * f)=f$, and the proof is completed.

A BCK-algebra X is called a Γ-BCK-algebra([4]) if whenever $x * y=$ $y * x$ then $x=y$ for every $x, y \in X$.

Theorem 3. If X is a $B C I$-algebra and Y is a Γ - $B C K$-algebra then $\operatorname{Hom}(X, Y)$ is a Γ-BCK-algebra.
Proof. Assume that $f * g=g * f$ for $f, g \in \operatorname{Hom}(X, Y)$. Then $f(x) * g(x)=$ $(f * g)(x)=(g * f)(x)=g(x) * f(x)$ for any $x \in X$. Since Y is a Γ-BCKalgebra, it follows that $f(x)=g(x)$ for all $x \in X$, and that $f=g$. Hence $\operatorname{Hom}(X, Y)$ is a Γ-BCK-algebra.

Since any positive implicative BCK-algebra is a Г-BCK-algebra([4]), we have the following corollary.

Corollary 1. If X is a BCI-algebra and Y is a positive implicative $B C K$-algebra, then $\operatorname{Hom}(X, Y)$ is a Γ-BCK-algebra.

A BCK-algebra X is said to be with condition (S) ([10]) if for any fixed y, z in X, the set $A(y, z)=\{x \in X: x * y \leq z\}$ has the greatest element which we denote by $y \circ z$.

In any BCK-algebra X with condition (S), the following hold for all $x, y, z \in X$ (see [10]):
(7) $x \circ 0=0 \circ x=x$,
(8) $x *(y \circ z)=(x * y) * z$.

In case X is also implicative, then
(9) $(x \circ y) * z=(x * z) \circ(y * z)$,
(10) $x \circ x=x$.

In [11] Iséki considered a condition on BCK-algebras that he called condition (C). This states that if $y, z \leq x$ and $x * z \leq x * y$, then $y \leq z$.

Theorem 4. Let X be a $B C I$-algebra and Y be an implicative $B C K$ algebra with condition (S). Then the algebra $\operatorname{Hom}(X, Y)$ is also with
condition (S).
Proof. Define an operation "०" on $\operatorname{Hom}(X, Y)$ by $(f \circ g)(x)=f(x) \circ g(x)$ for all $x \in X$ and all $f, g \in \operatorname{Hom}(X, Y)$. Then $f \circ g$ is clearly well-defined. Now

$$
\begin{aligned}
((f \circ g) * f)(x) & =(f \circ g)(x) * f(x) \\
& =(f(x) \circ g(x)) * f(x) \\
& =(f(x) * f(x)) \circ(g(x) * f(x)) \quad[\text { by }(9)] \\
& =0 \circ(g(x) * f(x)) \\
& =g(x) * f(x) \quad[\text { by }(7)] \\
& \leq g(x)
\end{aligned}
$$

for all $x \in X$. This shows that $f \circ g \in A(f, g)$. To prove $f \circ g$ is the greatest element of $A(f, g)$, let $h \in A(f, g)$. Then

$$
\begin{aligned}
(h *(f \circ g))(x) & =h(x) *(f \circ g)(x) \\
& =h(x) *(f(x) \circ g(x)) \\
& =(h(x) * f(x)) * g(x) \quad[\text { by }(8)] \\
& =(h * f)(x) * g(x)=0
\end{aligned}
$$

for every $x \in X$, which implies that $h *(f \circ g)=0$, that is, $h \leq f \circ g$. This completes the proof.

Theorem 5. Let X be a $B C I$-algebra and Y a $B C K$-algebra. If Y satisfies the condition (C), then the algebra $\operatorname{Hom}(X, Y)$ also satisfies the condition (C).
Proof. Let $f, g, h \in \operatorname{Hom}(X, Y)$ be such that $g, h \leq f$ and $f * h \leq f * g$. Then $g(x), h(x) \leq f(x)$ and $f(x) * h(x)=(f * h)(x) \leq(f * g)(x)=$ $f(x) * g(x)$ for all $x \in X$. Since Y satisfies the condition (C), it follows that $g(x) \leq h(x)$ for every $x \in X$. Hence $g \leq h$, and $\operatorname{Hom}(X, Y)$ satisfies the condition (C).

For any elements x, y in a BCI-algebra X, let us write $x * y^{n}$ for $(\ldots((x * y) * y) * \ldots) * y$ where y occurs n times. We say that an element x in a BCI-algebra X is a nilpotent element ([9]) if $0 * x^{n}=0$ for some
positive integer n. If every element x of X is nilpotent, then X is called a nil algebra ([9]).

Theorem 6. Let X be a $B C I$-algebra and Y a p-semisimple BCI-algebra. If Y is nil, then $\operatorname{Hom}(X ; Y)$ is nil.
Proof. Let $f \in H o m(X, Y)$ and let $x \in X$. Since Y is nil, there exists a positive integer n such that $0 * f(x)^{n}=0$. It follows that

$$
\begin{aligned}
0(x)=0 & =0(x) * f(x)^{n} \\
& =(\ldots(0(x) * f(x)) * f(x)) * \ldots) * f(x) \quad(f(x) \text { occurs } n \text { times }) \\
& =(\ldots(0 * f) * f) * \ldots) * f)(x) \quad(f \text { occurs } n \text { times }) \\
& =\left(0 * f^{n}\right)(x)
\end{aligned}
$$

so that $0 * f^{n}=0$. The proof is complete.
A non-empty subset I of a BCK/BCI-algebra X is called an ideal of X if (i) $0 \in I$, (ii) $y * x \in I$ and $x \in I$ imply that $y \in I$. An ideal I of a BCI-algebra X is a closed ideal ([6]) if $0 * x \in I$ whenever $x \in I$. An ideal I in a BCI-algebra X is called a strong ideal ([2]) if for $a \in I, x \in X-I$, $a * x \in X-I$. Let X be a BCI-algebra and Y a p-semisimple BCI-algebra. Let M and Θ be subsets of X and $\operatorname{Hom}(X, Y)$ respectively. We define orthogonal subsets M^{\perp} and Θ^{\perp} of M and Θ respectively ([14]) by

$$
M^{\perp}=\{f \in \operatorname{Hom}(X, Y) \mid f(x)=0 \text { for all } x \in M\}
$$

and

$$
\Theta^{\perp}=\{x \in X \mid f(x)=0 \text { for all } f \in \Theta\} .
$$

It is shown in [14] that M^{\perp} and Θ^{\perp} are ideals of $\operatorname{Hom}(X, Y)$ and X respectively.

Theorem 7. Let X be a BCI-algebra, Y a p-semisimple BCI-algebra, $M \subseteq X$ and $\Theta \subseteq H o m(X, Y)$. Then M^{\perp} and Θ^{\perp} are strong ideals of $\operatorname{Hom}(X, Y)$ and X respectively.
Proof. Note that in a p-semisimple BCI-algebra, an ideal I is strong if and only if it is closed. From [14; Proposition 1 and Theorem 4], we have that M^{\perp} is a strong ideal of $\operatorname{Hom}(X, Y)$. Let $a \in \Theta^{\perp}$ and $x \in X-\Theta^{\perp}$.

If $a * x \notin X-\Theta^{\perp}$, then $a * x \in \Theta^{\perp}$ and hence $0=f(a * x)=f(a) * f(x)=$ $0 * f(x)$ for all $f \in \Theta$. Since Y is p-semisimple, it follows from [14;Lemma $2(13)]$ that $f(x)=0$ for every $f \in \Theta$. Thus $x \in \Theta^{\perp}$, a contradiction. Therefore $a * x \in X-\Theta^{\perp}$, and Θ^{\perp} is a strong ideal of X.

A non-empty subset I of a BCI-algebra X is called a quasi-associative ideal of X ([17]) if (i) $0 \in I$, (ii) $x *(y * z) \in I$ and $y \in I$ imply $x * z \in I$.

Lemma 1. ([8], [13]) In a BCI-algebra X the following are equivalent:
(11) X is associative,
(12) $x * y=y * x$ for all $x, y \in X$,
(13) $0 * x=x$ for all $x \in X$.

Theorem 8. Let X be a $B C I$-algebra and Y an associative BCI-algebra. Let M and Θ be subsets of X and $\operatorname{Hom}(X, Y)$ respectively. Then M^{\perp} and Θ^{\perp} are quasi-associative ideals of $\operatorname{Hom}(X, Y)$ and X respectively.
Proof. Note that the zero homomorphism is contained in M^{\perp}. Let $f *$ $(g * h) \in M^{\perp}$ and $g \in M^{\perp}$. Then for any $x \in M, 0=(f *(g * h))(x)=$ $f(x) *(g(x) * h(x))$ and $0=g(x)$. It follows from Lemma 1 that $0=$ $f(x) *(0 * h(x))=f(x) * h(x)=(f * h)(x)$ for all $x \in M$. Hence $f * h \in M^{\perp}$ and M^{\perp} is a quasi-associative ideal of $\operatorname{Hom}(X, Y)$. Next clearly $0 \in \Theta^{\perp}$. Assume that $x *(y * z) \in \Theta^{\perp}$ and $y \in \Theta^{\perp}$. Then $0=f(x *(y * z))=f(x) *(f(y) * f(z))$ and $0=f(y)$ for every $f \in \Theta$. From Lemma 1 it follows that $0=f(x) *(0 * f(z))=f(x) * f(z)=f(x * z)$ for all $f \in \Theta$. Thus $x * z \in \Theta^{\perp}$. The proof is complete.

References

[1] M. Aslam and A. B. Thaheem, A note on p-semisimple BCI-algebra, Math. Japon. 36(1991), 39-45.
[2] S. A. Bhatti, Close-ness and open-ness of ideals in BCI-algebras, Math. Japon. 36(1991), 915-921.
[3] E. Y. Deeba and S. K. Goel, A note on BCI-algebras, Math. Japon. 33(1988), 517-522.
[4] A. Grzaslewicz, On the extensibility of commutative BCK-algebras, Math. Seminar Notes (presently Kobe J. Math.) 8(1980), 389-394.
[5] C. S. Hoo, BCK-algebras with Iséki's condition (C), Math. Japon. 32(1987), 735739.
[6] C. S. Hoc, Closed ideals and p-semisimple BCI-algebras, Math. Japon. 35(1990), 1103-1112.
[7] C. S. Hoo and P. V. R. Murty, A note on associative BCI-algebras, Math. Japon. 32(1987), 53-55.
[8] Q. P. Hu and K. Iséki, On BCI-algebras satisfying $(x * y) * z=x *(y * z)$, Math. Seminar Notes (presently Kobe J. Math.) 8(1980), 553-555.
[9] W. Huang, Nil-radical in BCI-algebras, Math. Japon. 37(1992), 363-366.
[10] K. Iséki, BCK-algebras with condition (S), Math. Japon. 24(1970), 107-119.
[11] K. Iséki, Some problems on BCK-algebras, Math. Seminar Notes (presently Kobe J. Math.) $8(1980), 395-402$.
[12] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23(1978), 1-26.
[13] K. Iséki and A. B. Thaheem, Note on BCI-algebras, Math. Japon. 29(1984), 255258.
[14] Y. B. Jun, J. Meng and S. M. Wei, A note on Hom(- , -) as BCI-algebras, Comm. Korean Math. Soc. 8(1993), 103-110.
[15] T. D. Lei and C. C. Xi, p-radical in BCI-algebras, Math. Japon. 30(1985), 511-517.
[16] Y. Liu, Some results on p-semisimple BCI-algebras, Math. Japon. 37(1992), 79-81.
[17] Z. Yue and X. Zhang, Quasi-associative ideal of BCI-algebras, Selected papers on BCK- and BCI-algebras (in china) 1(1992), 85-86.

