On Approximation by a Power Series Type Operator

A. S. Ranadive and S. P. Singh

Department of Mathematics, Guru Ghasidas University, Bilaspur (M.P.) 495009, India.

(1991 AMS Classification number 41A36; 41A25; 41A63)

In the present paper we study some quantitative estimates on a sequence of power series operators introduced by J. Swetits and B. Wood by using Peetre K - functional and modulus of continuity.

1. Introduction

Meir and Sharma [3] introduced a generalization of the S_{α} method of the summability by a matrix $(a_{n,k})$ defined as

$$\prod_{j=0}^{n} \frac{(1-\alpha_{j})}{(1-\alpha_{j}\theta)} = \sum_{k=0}^{\infty} a_{n,k} \theta^{k}$$
(1.1)

where $\{\alpha_j\}_{j=0}^{\infty}$ is a sequence of complex numbers and $0 < \theta < 1$.

If $0 < \alpha_j < 1$ (for $j = 0, 1, 2, \cdots$), then $a_{n,k} \ge 0$ (for $n = 0, 1, 2, \cdots$) and $k = 0, 1, 2, \cdots$). By putting

$$\alpha_j = \alpha_j(x) = \frac{h_j(x)}{1 + h_j(x)}; j = 0, 1, 2, \dots,$$

in the result (1.1), the following identity

$$R_n(x;\theta) = \prod_{j=0}^n \frac{1}{1 + h_j(x) - h_j(x)\theta} = \sum_{k=0}^\infty C_{n,k}(x)\theta^k$$
 (1.2)

(Received: 4 May 1994)

is obtained where $\{h_j(x)\}_{j=0}^{\infty}$ is a sequence of non-negative real valued functions defined on $[0,\infty)$.

Swetits and Wood [6] studied the following positive linear operator $\{L_n\}$ of order n defined as

$$(L_n f)(x) = \sum_{k=0}^{\infty} C_{n,k}(x) f(\frac{k}{n}) \text{ for } f \in C[0,\infty)$$

$$(1.3)$$

and proved the following result on convergence.

Theorem. Suppose $\{h_j(x)\}$ is a sequence of continuous non-negative real valued functions defined on $[0,\infty)$. Suppose that on each interval [0,a] there is a constant M which depends only on a such that $h_j(x) \leq M$ for $j=0,1,2,\cdots, x \in [0,a]$. Let f be continuous on $[0,\infty)$ and satisfy $|f(x)| \leq e^{Ax}$ for some constant A>0. Then the sequence $\{L_n f\}_{n=0}^{\infty}$ defined in (1.3) converges to f uniformly on [0,a] if $\{h_j\}_{j=0}^{\infty}$ is uniformly (c,1) summable to x on [0,a].

By putting $h_j(x) = x, \forall j$ in the operator (1.3), the following (Baskakov [1])

$$(V_n f)(x) = (1+x)^{-n} \sum_{k=0}^{\infty} \binom{n+k-1}{k} \left(\frac{x}{1+x}\right)^k f(\frac{k}{n}), \quad f \in C[0,\infty)$$
(1.4)

is obtained.

In the present paper [5] we prove some quantitative theorems on the operator (1.3).

2. Results

Proposition 2.1. For $n \geq 1$, the following moments are obtained

$$(L_n 1)(x) = 1 \tag{2.1}$$

$$(L_n t)(x) = \frac{1}{n} \left[\frac{\partial}{\partial \theta} R_n(x, 1) \right]$$
 (2.2)

$$(L_n t^2)(x) = \frac{1}{n^2} \left[\frac{\partial}{\partial \theta} R_n(x, 1) + \frac{\partial^2}{\partial \theta^2} R_n(x, 1) \right]$$
 (2.3)

In particular, one gets

$$(L_n(t-x)^2)(x) = \frac{1}{n^2} \left[\frac{\partial^2}{\partial \theta^2} R_n(x,1) + (1-2nx) \frac{\partial}{\partial \theta} R_n(x,1) \right] + x^2$$
$$= H_n(x) (say)$$
(2.4)

Proof. By putting $e_i(x) = x^i$ for i = 0, 1, 2 in the operator (1.3), the results (2.1) to (2.4) follow easily.

Theorem 2.2. If $g \in C_B^{(2)}[0,\infty)$ then for $n \geq 1$, we have the following estimate,

$$|(L_n g)(x) - g(x)| \le M_n(x) ||g||_{C_R^{(2)}}$$
 (2.5)

where

$$M_n(x) = \max\{\left|\frac{1}{n}\frac{\partial}{\partial \theta}R_n(x,1) - x\right|; \frac{1}{2}|H_n(x)|\}$$
 (2.6)

and

$$||g||_{C_B^{(2)}} = ||g||_{C_B} + ||g'||_{C_B} + ||g''||_{C_B}$$
 (2.7)

for a bounded and uniformly continuous function f on the interval $[0,\infty)$ with the norm $\|\cdot\|$ defined as

$$||f||_{C_B} = \sup_{0 \le t < \infty} |f(t)|.$$

Proof. By applying the Taylor's expansion for $g \in C_B^{(2)}[0,\infty)$, we write that

$$g(t) - g(x) = (t - x)g'(x) + \frac{1}{2}(t - x)^2 g''(\xi)$$

where $\min(x,t) \leq \xi \leq \max(x,t)$. Using the expression (1.3) and the results (2.1) to (2.4), we see that

$$|(L_n g)(x) - g(x)| \leq ||g'|| |L_n(t-x)(x)| + \frac{1}{2} ||g''|| |L_n(t-x)^2(x)|$$

$$\leq ||g'|| |\frac{1}{n} \frac{\partial}{\partial \theta} R_n(x,1) - x| + \frac{1}{2} ||g''|| |H_n(x)|$$

$$\leq M_n(x) \{ ||g'|| + ||g''|| \}$$

$$\leq M_n(x) ||g||_{C_R^{(2)}}$$

This completes the proof.

For a function $f \in C_B[0,\infty)$ the Peetre K-functional is defined as ([4])

$$k(f; u) = \inf_{g \in C_B^{(2)}} \{ \|f - g\|_{C_B} + u \|g\|_{C_B^{(2)}} \}$$

where $u \geq 0$ is any real number. The Peetre K-functional is related to second order of modulus of continuity as below

$$k(f;u) \le A\{\omega_2(f;\sqrt{u}) + \min(1,u) \|f\|_{C_R}\}$$
(2.8)

where the constant A depends only on f and u.

Theroem 2.3. For $f \in C_B[0,\infty)$, one gets that,

$$|(L_n f)(x) - f(x)| \le 2A\{\omega_2(f) : \sqrt{\frac{M_n(x)}{2}}\} + \min\{1; \frac{M_n(x)}{2}\} \|f\|_{C_B}\}$$
 (2.9)

where $M_n(x)$ and A are already defined.

Proof. For $f \in C_B[0,\infty)$ and $g \in C_B^{(2)}[0,\infty)$ we can write that

$$\begin{aligned} |(L_n f)(x) - f(x)| &\leq |(L_n f)(x) - (L_n g)(x)| + |(L_n g)(x) - g(x)| \\ &+ |f(x) - g(x)| \\ &\leq ||L_n|| ||f - g||_{C_B} + M_n(x) ||g||_{C_B^{(2)}} + ||f - g||_{C_B} \\ &\leq 2\{||f - g||_{C_B} + \frac{1}{2} M_n(x) ||g||_{C_B^{(2)}}\}. \end{aligned}$$

Taking infimum over $g \in C_B^{(2)}[0,\infty)$ and using the result (2.8), we see that

$$|(L_n f)(x) - f(x)| \leq 2k(f; \frac{1}{2} M_n(x))$$

$$\leq 2A\{\omega_2(f; \sqrt{\frac{M_n(x)}{2}}) + \min(1; \frac{M_n(x)}{2}) ||f||_{C_B}\}$$

This completes the proof.

Theorem 2.4. Let $f \in C^{(1)}[0, a], a > 0$. Then for $n \ge 1$

$$|(L_n f)(x) - f(x)| \leq ||f'|| \frac{1}{n} \frac{\partial}{\partial \theta} R_n(x, 1) - x|$$

$$+ \frac{3}{2} \omega(f'; \sqrt{H_n(x)}) \sqrt{H_n(x)}$$

$$(2.10)$$

where $\omega(f';\cdot)$ is the modulus of continuity of f' and $H_n(x)$ is defined in the result (2.4).

Proof. We have

$$f(t) - f(x) = (t - x)f'(x) + \int_0^1 (t - x)[f'\{x + \theta(t - x)\} - f'(x)]d\theta$$

so applying (1.3) we get that

$$|(L_{n}f)(x) - f(x)|$$

$$\leq |f'(x)||L_{n}(t-x)(x)| + [L_{n}(t-x)\int_{0}^{1} \{f'(x+\theta(t-x)) - f'(x)\}d\theta](x)$$

$$\leq ||f'|||L_{n}(t-x)(x)| + [L_{n}|t-x|\int_{0}^{1} |f'(x+\theta(t-x)) - f'(x)|d\theta](x)$$

$$\leq ||f'|||L_{n}(t-x)(x)| + [L_{n}|t-x|\int_{0}^{1} \omega(f';|\theta||t-x|)d\theta](x)$$

$$\leq ||f'|||L_{n}(t-x)(x)| + [L_{n}|t-x|\int_{0}^{1} (1+\frac{|\theta||t-x|}{\delta})\omega(f';\delta)d\theta](x)$$

$$\leq ||f'|||L_{n}(t-x)(x)| + \omega(f',\delta)[L_{n}|t-x|(1+\frac{|t-x|}{2\delta})](x)$$

$$\leq ||f'|||L_{n}(t-x)(x)| + \omega(f',\delta)[L_{n}|t-x|(x) + \frac{1}{2\delta}(L_{n}(t-x)^{2})(x)]$$

Further using (2.1) to (2.4) and schwarz inequality we get that

$$|(L_n f)(x) - f(x)| \le ||f'|| \frac{1}{n} \frac{\partial}{\partial \theta} R_n(x, 1) - x| + \omega(f'; \delta) \left[\sqrt{H_n}(x) + \frac{1}{2\delta} H_n(x)\right].$$

Finally choosing $\delta = \sqrt{H_n(x)}$, we get the required result. This completes the proof.

Theorem 2.5. For $f \in C^{(1)}[0,a]$, a > 0, let $(L_n f)$ be a sequence of positive linear operators defined in (1.3). Then for $n \geq 1$ the following estimates hold

$$|(L_n f)(x) - f(x)| \leq \left(3 + \frac{H_n(x)}{\delta^2}\right) \omega_2(f; \delta)$$

$$+ \frac{2}{\delta} \left| \frac{1}{n} \frac{\partial}{\partial \theta} R_n(x, 1) - x \right| \omega_1(f; \delta) \qquad (2.11)$$

$$\leq \omega_1^*(f; \sqrt{H_n(x)}) \qquad (2.12)$$

$$\leq ||f'|| \left| \frac{1}{n} \frac{\partial}{\partial \theta} R_n(x, 1) - x \right|$$

$$+ \omega_1(f'; \delta) \left[\sqrt{H_n(x)} + \frac{1}{2\delta} H_n(x) \right] \qquad (2.13)$$

Where, $\omega_1^*(f;\cdot)$ is the least concave majorant of $\omega_1(f;\cdot)$ and (2.13) is valid for $f \in C^{(1)}[a,b]$.

Proof. The proof follows from ([2] Theorem 2.1) on using (2.1) to (2.4).

3. A Special Case

Baskakov Operator. By putting $h_j(x) = x \forall j$ in the result (2.1) to (2.4) we get that

$$(L_n 1)(x) = 1 \tag{3.1}$$

$$(L_n t)(x) = x (3.2)$$

$$(L_n t^2)(x) = x^2 (1 + \frac{1}{n}) + \frac{x}{n}$$
(3.3)

In particular,

$$L_n(t-x)(x) = 0 (3.4)$$

and

$$L_n(t-x)^2(x) = \frac{x(1+x)}{n} = H_n(x) \text{ (say)}$$
 (3.5)

and also

$$M_n = \max\{0; \frac{1}{2} \left| \frac{x(1+x)}{n} \right| \right\} = \frac{x(1+x)}{2n}$$
 (3.6)

We get the following results on Baskakov operators (1.4).

Theorem. If $g \in C_B^{(2)}[0,\infty)$ then for $n \geq 1$,

$$|(V_n g)(x) - g(x)| \le \left(\frac{x(1+x)}{2n}\right) ||g||_{C_B^{(2)}}$$
 (3.7)

Theorem. For $f \in C_B[0,\infty)$ then for $n \geq 1$

$$|(V_n f)(x) - f(x)| \le 2A[\omega_2(f; \frac{1}{2}\sqrt{\frac{x(1+x)}{n}}) + \min(1; \frac{x(1+x)}{4n})||f||_{C_B}]$$
(3.8)

Theorem. Let $f \in C^{(1)}[0,\infty)$ and let $\omega(f';\cdot)$ be the modulus of continuity of f'. Then for $n \geq 1$ we have

$$|(V_n f)(x) - f(x)| \le \frac{3}{2}\omega(f; \frac{1}{2}\sqrt{\frac{x(1+x)}{n}})\sqrt{\frac{x(1+x)}{n}}$$
 (3.9)

Theorem. Under the assumptions, the Theorem 2.5 reduces to the following result

$$|(V_n f)(x) - f(x)| \le \left\{3 + \frac{x(1+x)}{\delta^2 n}\right\} \omega_2(f; \delta) \tag{3.10}$$

$$|(V_n f)(x) - f(x)| \le \omega_1^*(f; \sqrt{\frac{x(1+x)}{n}})$$
 (3.11)

$$|(V_n f)(x) - f(x)| \le \left[\sqrt{\frac{x(1+x)}{n}} + \frac{x(1+x)}{2n\delta}\right] \omega_1(f'; \delta)$$
 (3.12)

Acknowledgements. The authors are thankful to Prof. R. L. Singh, Kulpati, Guru Ghasidas University, Bilaspur (M.P.), for the constant inspirations and noble guidance during the preparation of the paper.

References

- Baskakova, V. A., An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Hank. USSR, 113(1957), 249-251.
- [2] Gonska, H. H., On almost Hermite-Fejer interpolation: pointwise estimates, Bull. Austral. Math. Soc. 25(1982), 405-423.
- [3] Meir, A. and Sharma, A., A generalization of the S_α summation method, Proc. Cambridge Philos. Soc. 67(1970), 61-66.
- [4] Peetre, J., A Theory of Interplation of Normed Spaces, Lecture Notes, Brazilia, 1963.
- [5] Ranadive, A. S., Approximation by Positive Linear Operators, Ph.D. thesis, Guru Ghasidad University, Bilaspur (M.P.) 1991.
- [6] Swetits, J. and Wood, B., On a class of positive linear operators, Canad. Math. Bull. Vol. 16(4) (1973), 557-559.