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In the present paper we study some quantitative estimates on a sequence of power
series operators introduced by J. Swetits and B. Wood by using Peetre K - functional

and modulus of continuity.

1. Introduction

Meir and Sharma [3] introduced a generalization of the 5, method of
the summability by a matrix (a, ) defined as

- (1—'0.'1) = - Bk
J‘=1'[D—-—-—-(1_%‘9) ‘gan‘k (1.1)

where {@;}%2, is a sequence of complex numbers and 0 < 8 < 1.
0<e; <1 (for j =0,1,2,:---), then a, 3 2 0 (for n = 0,1,2,---
and £ =0,1,2,---). By putting
hj(z)

a..'l’ = O"J(:E) = Thj(r—)ij = 01132!”'1

in the result (1.1), the following identity

Ry(zi0) = ] 1+ hj(s:)l— h(z)8 2_ Cnil(2)f" (L2)

1=0 k=0
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is obtained where {f;(2)}%2, is a sequence of non-negative real valued
functions defined on [0,00).

Swetits and Wood [6] studied the following positive linear operator
{L,} of order n defined as

o0

(Laf)(2) = Y- Cusl) (5 for J € C10,00) (13)

k=0
and proved the following result on convergence.

Theorem. Suppose {h;(z)} is a sequence of continuous non-negative real
valued functions defined on [0,00). Suppose that on each interval [0,a]
there is a constant M which depends only on a such that hj(z) < M
for 7 =0,1,2,---, z € [0,a]. Let f be continuous on [0,0) and satisfy
|f(z)] < €T for some constant A > 0. Then the sequence {L.f}22,
defined in (1.3) converges to f uniformly on [0,a] if {h;}32, is uniformly
(c,1) summable to z on [0,a].

By putting h;(z) = z,VJ in the operator (1.3), the following ( Baskakov
[1])

(Vaf)&) = (42" Y ( - 1)(1 L), T ech)
k=0
(14)

is obtained.
In the present paper [5] we prove some quantitative theorems on the
operator (1.3).

2. Results

Proposition 2.1. For n > 1, the following moments are obtained

(Lnl)(z) =1 (2.1)

(Lnt)(@) = ~[-2- Ral, 1) (22)

(Ln?)(@) = 51 Bulr, 1) + o B, 1) (2.3
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In particular, one gets

, 19 ) ,
(Ln(i—l‘) )(.’E) = E[@Rn(aﬁvl)*—(l —an)-a—eRn(:c,l)]+I
= Ha(z) (s0y) (2.4)

Proof. By putting e;(z) = z* for i = 0,1,2 in the operator (1.3), the
results (2.1) to (2.4) follow easily.

Theorem 2.2. Ifg € Cg;[O,_ac) then for n > 1, we have the following
estimate,

(Lag)(@) = 9(@)] < Mal@)llgl 0 (2.5)
where i 3
Mu(z) = mau\{|—39Rn(:r 1) — z|; - |H (z)|} (2.6)
and
lgll ez = llglics + llg'llcs + llg”lles (2.7)

for a bounded and uniformly continuous function f on the interval [0,0c)
with the norm || - || defined as

Iflles = sup |f(2)
0<t<oo

Proof. By applying the Taylor’s expansion for g € C'g)[[),oo), we write
that

o(t) - o(2) = (t = 2)g'(2) + 5( - 2)°"(€)

where min(z,t) < £ < max(z,t). Using the expression (1.3) and the
results (2.1) to (2.4), we see that

(Lag)@) = g(@)| < N NEn(E = 2)(@) + llg" 1 E(t — 2)(2)

1
llg IH——R (2,1) = 2+ Sllg" |l Ha(2)]

Mn(f){“.qf” + llg"|I1}
Mn(l")”g”dsm

IA A
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This completes the proof.

For a function f € Cpg[0,00) the Peetre K-functional is defined as
([4])

k(fiw) = inf {If - glics +ullgll oo}
gecly

where u > 0 is any real number. The Peetre K-functional is related to
second order of modulus of continuity as below

k(fiu) < A{wa(f;v/u) + min(1, )| fllop} (2.8)
where the constant A depends only on f and wu.

Theroem 2.3. For f € Cg[0,00), one gets that,

(L) = £ < 240t f £ 22 mings 22y y 2

where My (z) and A are already defined.
Proof. ¥or f € Cp[0,00) and g € (71(32)[01 oo) we can write that

|(Lnf)('7") - f(x)I < [(Lnf)(x) - (Lng)(l'” + I(Lng)("‘u) - g(:t:)l
+f(z) - g(z)|

< NLalllf = glics + Ma(@)lglloe + 1 = glics
1
< 2l - glles + 5 Ma(@)llgll @3-

Taking infimum over g € Cg)[(],oo) and using the result (2.8), we see
that

(Eaf)@) = S@)] < 2K(S; %MR(:c))

IA

)

IA

2A4{wq(f; ) + min(

This completes the proof.
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Theorem 2.4. Let f € CV[0,a],a > 0. Then forn > 1

(Lo f)(z) = f(x)] < |If lll——Rn(I 1) - z| (2.10)
§";(f;\/Hn($ )\/Hn(z)

where w( f';-) is the modulus of continuity of f' and H,(z) is defined in
the result (2.4).

Proof. We have

£(t) - flz =t—rf(z)+f(t—z)[f{:r+9(t—:r:} F(2)]d8

so applying (1.3) we get that

(End)&) = F(2)]

< @It = 2@ + Lt = 2) [ 1o+ 00t - 2) = F(@)}dblz)
< WP Ea(t = )|+ Ealt = | [ 17+ 000 = 2) = £(@)ldb](2)
< NPMEn = 2@+ [Ealt = 2l [ w5161l = 2de)(o)

< NPMEnte =)@ + alt =2l [ @+ EEZ s ydo)a)

< ISNEA(t = 2)E) + ol ) Ll = +‘ e

y . . 1 .
< N MLa(t = 2) @) + (S, 6)[Lalt = zl(z) + 5 (Ln(t = z)*)(2)]
Further using (2.1) to (2.4) and schwarz inequality we get that

[(Lnf)(2)=f(z)| < [|S |||—*R D) —z|+w(f;6)[VHa(z) )+ 35 H ()]

Finally choosing é§ = \/H,(z), we get the required result. This completes
the proof.
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Theorem 2.5. For f € C[0,a],a > 0, let (L.f) be a sequence of
positive linear operators defined in (1.3). Then for n > 1 the following
estimates hold

H(

I(Lnf)(z) = f(2)] < (3+ Jwa(F38)
21 ()

t5lop Balz,1) = zlen(f;6) - (2.11)

ul(f- 1/H (z)) (2.12)

IS |||**ff 1) =2

+ 50 Hal@) + o Hale)]  (213)

Where, wi(f;+) ts the least concave majorant of wi(f;-) and (2.13) is
valid for f € C(Wa,b].
Proof. The proof follows from ([2] Theorem 2.1) on using (2.1) to (2.4).

A

A

3. A Special Case

Baskakov Operator. By putting h;(z) = 2Vj in the result (2.1) to
(2.4) we get that

(Lnl)(z) =1 (3.1)
(lnt)(E) =2 (3.2)
(Lat®)(z) = 22(1+ 1)+ & (3.3)
n’ n
In particular,
L.(t—z)(z)=10 (3.4)
and
Ly(t—2)’{z) = 1(1: z) = H,(z) (say) (3.5)
and also
Lowtl +2) s 2l +2)

M, = max{0; —| (3.6)

n I} = 2n
We get the following results on Baskakov operators (1.4).
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Theorem. If g € Cg)[O,oc) then for n > 1,

Vag)@) - @)l < (XD gl o (37)

Theorem. For f € Cg[0,) then for n > 1

z(1+4+x)

(Vaf)(@) ~ F(2)] < 2ALnlfi 5 Yoty 2

&)
(3.8)

Theorem. Let f € CV[0,0c) and let w( f';-) be the modulus of continuity
of f'. Then for n > 1 we have

(Vaf)(&) = f(@)] < %(I;%\/I“:I))\/I(l: SRR

Theorem. Under the assumptions, the Theorem 2.5 reduces to the fol-
lowing result

[(Vaf)(z) — flz)] < {3+ r(;;;m)}wz(f;ﬁ) (3.10)
|(Vaf)(z) - flz)] S w 1(1:3;) (3.11)

(Vaf)z) - f(2)] < [\/3“: z) 4 ‘”‘;;I’lwl(f';a) (3.12)
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