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ABSTRACT

It is practical to taper the element {e.g., antenna or sensor) spacing with uniform weight rather than to taper the
weights with uniform spacing. In a rectangular array, a triangular grid geometry of elements is more economical
than a rectangular grid geometry in terms of reducing the number of elements.

A space-tapering approach is proposed to improve the performance of a rectangular phased array with a triangular
grid geometry of elements above a ground plane, The effects of space tapering on the main heam width and sidelobe
level are discussed. It is shown that the proposed approach improves the sidelobe performance while the main beam
width becomes a little broader,

L. introduction element configuration in a given geometry, type

of individual elements, amplitude and phase dis-

To improve the transmitting and receiving per- tribution of the currents feeding the elements,
formance of an antenna/sensor array, the array and mutual coupling effects [1].

needs to be designed in such a way that the main If the array is large and the cost of each

beam width is narrow and the sidelobe level is element is expensive, one major concern in the

low enough to satisfy prespecified performance array design is to achieve a desired array perform-

criteria, Some factors which affect the perform- ance with fewer number of elements. A practical

ance of the main beam width and sidelobe leve) way of synthesizing such an array is to taper the

are the number of elements, array geometry, element spacing with uniferm element currents,

Another advantage of a space-tapered array is

T —_—— that the mutual coupling effects are not signifi-

Department of Electrical Engineering, University of Inchon  cant due to larger distance between neighboring
A=t 199549 29 6 elements compared to a normal uniformly spaced
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array, The application areas of the array include
sonar [2], radar [3], and seismology [4].

In this paper, a space-tapering approach is used
to improve the performance of a rectangular
phased array with a triangular grid geometry of
elements above a ground plane. The effects of
space-tapering on the array performance in terms
of main beam width and sidelobe level are dis-
cussed. It is assumed that the array is large and
mutual coupling effects are negligible, and the
array is above a ground plane which is sufficiently
large such that there are no edge effects due to
the ground plane,

[I. Performance of Main Beam Width

A Uniformly Spaced Array

Consider a rectangular array with a triangular
grid geometry of isotropic elements as shown in
Fig.1. Assuming uniform current of unit magnitude
at each element, the array factor steered to (6,, ¢,)
is given by

H(8, ¢} =

7 4 nyf2
e‘}'ﬁ[ (260 + 0.5)d (2~ 25) + b+ 0.25)dy(0—15) ]

n=—n,f4 m=—n,f2

nwand m#0
(1)

¢~ JBL{2ba—0.5)d e —tso) + {ba—0.25)d (v —2,})
ne =y, f4 m=—n,f2

nyld 7y f2

nand m#0

#—4,=cos 6 cos ¢—cos 6, cos 4, (2}
v~v,=cos 0 cos §~cos 8, cos ¢, (3)
b =s(k){|k}—0.5) (4)
ﬁ=2?tflc (5)

8 and ¢ are the elevation and azimuth angles
respectively, d, and &, are the spacings between
neighboring elements in the ¥ —axis, s{k) denotes
the sign of k, and A is the wave length for the
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Fig. 1 A rectangular array of a triangular grid
geometry,

array center frequency, When the array is steered
to{f, 4,), the amplitudes of the array factor at
two half-power angles are related to its maximum
value as

H(6,, $,) = H{(6,, 4,) =0.7071 H(6,, 4,) (6)

where 6,=6,—A&6, and &,=0,+ A0, Note that
F(8,, #,) =n.n, for unit current at each element,
Assuming an array consisting of a large number
of elements, which has a narrow main beam, the
directional factors can be approximated as

u—u,= 28 cos b, cos §, {7)
and
v~v,= A8 cos 8, cos ¢, (8)

where A8 and A @, are assumed to be approxi-
mately equal to A¢. Expanding H{6, &,) in a
Taylor series assuming a large array with A48
small [5], we have the half-power beam width 8,
(i.e., 228) in the elevation angle plane as
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o2 — 2.3432
B cos? 8,(2.3432 cos? B,/02,+ 2.3432 sin? 4,/05,

+0.2582 d.d, sin ¢, cos ¢,] 9

where & and 6, are the half-power beam
widths at broadside in the x and y-axis and are

given by

ekxo =£§§Gﬁ (10)
L,

and

3;,_“, =i‘___ an
LJ"

where L, and I, are the array dimensions in
wavelength along the x and y-axis respectively,
Similarly, it can be shown that the half-power
bearn width in the plane orthogonal to the elevation
angle plane is given by

2,3432
[2.3432 sin? g,/05,+ 2.3432 cos® 4./6/

0%=

—0.2582 d, dy sin ¢, ©0s 4,) (12)

It is observed that the half-power beam width
along the elevation angle is inversely proportional
to the cosine of the elevation angle from the
broadside while the half-power beam width in the
plane orthogonal to the elevation angle plane does
not depend on the elevation angle. Also, it is
shown that the variations of 6, and @,, along the
azimuth angle depend on the array geometry such
that the bearn width decreases toward the azimuth
angle where the array dimension is large and
increases toward the azimuth angle where the array
dimension is small,

B. Space-Tapered Array
The array is space-tapered such -that the
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inter-element spacings in the x and 3 axis increase
linearly and symmetrically toward the four array
stdes, The spacings between the ¥ and y directions

are given by

= (1 +na)d, (13}
and
dy=(1+nao)dy (14)

respectively, The ratios &, and «, are obtained
from a given array size and center spacing dy
and d, for each axis and expressed as

%= 4(ny—1(d, [ dec— 1) /[0, —2) ] (13)
and
a,=4(n,—1){d, [ dyc—1)/[n,(n,—~2)] (16}

where »n, and », are the number of elements in
the x and y-axis respectively and assumed to be
even and greater than two. The half-power beam
width in the elevation angle plane can be obtained
using the same procedure as for the uniform array
and is given by

02 = 2.3432
B cos? 8,02.3432 cos? 4,05, 2.3432 sin’ §,/67,

+ . d?, % dyc dyc sin ¢, cos g,/n,] an

where

n,f2
=Y. (=1)"[#—0.5+n(n~—1)a, /2] (18)

n=1
and

avy,=1+(n,/2—1}u, {19)

Also, the half-power heam width in the plane
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orthogonal to the elevation angle plane is given
by

2.3432
[2.3432 sin? d,/82,+ 2.3432 c0s? dof B0

8% =

— Ny By 7 docdye sin ¢, c0s @,fn, ] (20)

It can be shown that if the array is large, the 64,
and 8, in the space-tapered array are approximated

as

. — 2.3432 n, (21)
§Fdic ”gl 2[#n—0.5+0.5n(n—1)a,J?

and

BR,=

2.3432 »,

nyf2
B dse 2:1 {2(n—0.5+0.5n(n—1)a,]12+0.125 dr}}
" (22)

The half-power beam widths for a 208 X 32
uniformly spaced and space-tapered arrays are
evaluated to find the performance of the main
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Fig. 2 Half-power beamwidths in terms of steering
angle in the x-axis (¢,= 0°).
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Fig. 3 Half-power beamwidths in terms of steering
angle in the y-axis (¢, =90°).

beam width, Figs.2 and 3 show the half-power
beam width in terms of elevation angle for §,=
for the uniformly spaced{d,==0.656Ac, d,=7.5721¢)
and two space-tapered arrays(d,c=0.6Ac, dyc=
0.7A¢ : dc =0.554;, dyc=0.654¢) in the x and ¥
.axis, It is shown that the half-power beam width
is a little broader in the space-tapered array than
that in the uniformly spaced array, The half-power
beam width in the elevation angle plane in terms
of azimuth angle plane with 8,=0" is shown in
Fig.4. It is observed that the half-power beam

half-paver Sear widlh 1deg)
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Fig. 4 Half-power beamwidths in terms of azimuth
angle with 8,={".



A Space-Tapering Approach for a Rectanguiar Array

3 — —— ‘
P ]
= :

: o i i
E
: H /' -
o 4 iy i
3 \ 4 i
H P i i
& ¥ A .
= b= \ ! \ /
'z Y /’ i
AN / \ A
w4 . A i
[ \“\..// R !
!
ot ! . E
0 100 230 3

aziauth angle lasg.!

Fig. 5 Half-power beamwidths in the plane orthogonal
to the elevation angle plane in terms of azimuth
angle.

Note for the figures :

uniformly spaced :

d,=0.656¢ ; d,=0.75724¢ (solid curve)
space-tapered -

d.c=0.6Ac 1 dyc=10.654, (dotted curve)
de=0.55x¢ : dyc =0.65A, (dotted curve)

width in the large dimension (i.e., r-axis) varies
less than that in the smalt dimension (i.e., y-axis)
in the space-tapered array. It is shown that the
variation in the x-axis is 0.06° and that in the
y-axis is 0.2°. Fig.5 shows the half-power beam
width in the plane orthogonal to the elevation
angle plane for the uniformly spaced and the two
space-tapered arrays. The similar phenomenon
was observed as in the elevation angle plane, except
that the maximum and minimum beam widths are
interchanged compared to Fig. 4.

. Sidelobe Performance

The location and level of sidelobes in the x and
y-axis are examined in the uniformly spaced and
space-tapered rectangular array of a triangular
grid geometry of elements, An iterative method
is used to find the sidelobe locations and the cor-
responding sidelobe levels are calculated via the
array factor,
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A Uniformly Spaced Array
The array factor of a uniformly spaced array
can be expressed as

nf2-4 ny—1

H(G, é) = E z {1 +g;'ﬂld',-l'u—u.,}+0.5d,iu-l-'o”}

n=() nmo

o /Bl 2nd (i) +mdy(v=10,)] (23)

Changing the phase center with normalization,
we have the array factor in the x-axis(e.g., ¢=4¢,
=(°) as

H(8, 0°) =sinx/sin(x/n,) 1 x=n.a/4 (24)
whete
a=2pd(sin 8—sin 4,). (25)

The solution of {24) can be obtained iteratively
using the Newton’s method [6] with its derivative.
It can be shown that the iterative equation is
given by

#x tan(x, -y /n,) —tanx,—;
1/cos*(xy—y/n,) —1/cos?x,_,

, X F0
(26)

Xy = Xy=
and
L=+ Cm+ D2+ 2x, 1<sm< (n,—1)f2 (27)

where Ax is a small real number which is deter-
mined by convergence considerations. Note that x,,
=0 corresponds to the location of the main beam,
A root x, can be found by applying (26) iteratively
with an initial value x,. Then the angular location
of a sidelobe is given by

6, =sin"'{ Ax.d,) +sin §,].
8,=sin"[Ax,/(nn.,) +sing,). (28)

In (28), it is observed that the angular distance
of the sidelobe from the steering direction is
inversely proportional to element spacing and the
number of elements.
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It can be shown that the iterative equation for
the locations of sidelobes in the y-axis (i.e., ¢ =4,
=90°) is given by

2ny tan(x,—,/{(2n,} —tanx, -,

¥ = Fam1™ 1/cost(x,-,f(2n,) J—1fcos? X,y (29)
and the location of the sidelobes is given by
Ax .
=sin!
6,=sin [—Lnnydy +sin 30] (30)

B. Space-Tapered Array
If the array is space-tapered as in Section 2. B,
the array factor in the x-axis can be expressed as

H,(6, 0% = "glcos ben (31)
where

by =[n—05+nn~1)a,/2] Barc (32}
and

#=sin §—sin 8, (33)

It can be shown that the iterative equation and
the location of the sidelobes are given by

e f2 Hef2 2
Uy — Uy ZbgnSin(bm“”-l)! Zbl"l Cos(bxu“n—])
#=}

»=1 {34)
and
0, = sin"}(u,+sin 6,). (35)
Similarly, the iterative equation and sidelobe

locations in the y-axis are given by

#y {2

atan(av,_) Z—x cos{dy, vp-y) + Zl 8, SIN (BynVyy—1)
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and

8,=sin"!{v,+sin 6,) (37
where

a=[1+4 (n,~2)a, 2] Bsyc/4 (38)
by =[n—-05+n(n—1)a,/2] gd, (39)
»=sin #—sin 8, (40)

The initial value of #(or ) can be roughly deter-
mined from ¥, in (27).

The location and level of the first and second
sidelobes for the beam pattern of the 208 x 32
array are evaluated with respect to three element
conditions : isotropic element in free space, isotropic
element A-/4 above ground plane, and dipole A /4
above ground plane, It is observed that for a
center spacing of d.c=0.6x; and d,c=0.7A, the
first and second sidelobes decrease by about 1.3
and 0.5 decibels respectively in the x-axis and 1.2
and 0.4 decibels respectively in the y-axis compared
with those of the uniformly spaced array and the
amount of decrease is insensitive to the steering
angle. For the case of d,c=0.554¢ and d,=0.65
Ac, the first and second sidelobes decrease by
about 2,7 and 0.7 decibels respectively in the x-axis
and 2.3 and 0.7 decibels respectively in the y-axis,
It is shown that the first sidelobe decreases about
three times more than the second sidelobe for all
cases, from these results, it is found that the
space-tapered array is more efficient in counte-
racting the inter ferences incident at the angular
region of the first siclelobe than the uniformly
spaced array. It is observed that the effect of

#y/2

Up=VUp-1— 2
.

"y /2

(36)
1512

ay b,sin(b,,v, |)—2atanlav,-) Zl byusin (b, 0, ) + Zr b2, cOs{dy, n—y)
n=1 - 220
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Table 1. First sidelobe level : uniformly spaced ; x-axis ;
dx= 0.5561(;, dy=0.75721(‘ : (90. do) = (00. 0°)

left right
location 0.6006° -0.6006°
isotropic element in free space (decibel) -13.2608 -13.2608
isotropic element A, /4 above ground plane (decibel) -13.2608 -13.2608
dipole A /4 above ground plane {decibel) -13.2615 -13.2615
Table 2. First sidelobe level : space-tapered : x-axis .
d,=0.64¢, dyci {8, 8,0 =1(0° (F)
left right
location 0.6082°¢ -0.6082°
isotropic element in free space (decibel) -14.5349 14,5349
isotropic element A /4 above ground plane (decibel) -14.5349 -14.5349
dipole A, /4 above ground plane {decibel) -14.5356 -14.5356
Table 3. First sidelobe level : space-tapered ; x-axis ;
dec =0.554 ¢, dyc =0.651¢ : (8, 8,) =(0°, 0°)
left right
lacation 0.6146° -0.6146°
isotropic element in free space (decibel) -15.9148 -15.9148
isotropic element A /4 above ground plane (decibel) -15.9148 -15.9148
dipole A /4 above ground plane (decibel) -15.9155 -15.9155
Table 4. Second sidelobe level : space-tapered ; x-axis ¢
dec=0.351¢, dyc=0.651¢: (8, ¢,) = (10° 0%)
left right
location 11.0511° -8.9522°
isotropic element in free space (decibel} -18.5196 -18.5196
1sotropic element A, above ground plane (decibel) -18.5208 -18.5187
dipole A~ above ground plane (decibel) -18.5638 -18.4801

dipole pattern on the sideiobes is negligible. Some
results for relevant sidelobe locations and levels
are shown in Tables 1-4,

V. Conclusions

The effects of space-tapering on the main beam
width and the sidelobe levels are discussed with

respect to uniformly spaced and space-tapered
rectangular phased arrays of a triangular grid
geometry. It is shown that the first sidelobe of
the space-tapered array is noticeably reduced
compared with the uniformly spaced array while
yielding a little broader main beam, It is found
that the space-tapering approach is more effective
in a large array in terms of achieving a better



122

performance of the sidelobe with a less increase
of the main beam width. It is to be noted that
since the mutual coupling effects get reduced as
element spacing increases, the space-tapered array
will yield a better sidelobe performance than the
uniformly spaced array in the presence of mutual
coupling effects.
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