
40

PDOCM : Fast Text Compression on MasPar Machine

PDOCM :MasPar머쉰상의 새로운 압축기법과 빠른 텍스트 축약

Yong Sik Min*

*호서대학교 전자계산학과

접수일자 : 1995년 1월 9일

민 용 식*

Abstract

Due to rapid progress in data communications, we are able to. acquire the information we need with ease. One

means of achieving this is a parallel machine such as the MasPar. Although the parallel machine makes it possible

to receive/transmit enormous quantities of data, because of the increasing v이ume of information that must be

processed, it is necessary to transmit only a minimal amount of data bits.

This paper suggests a new coding method for the parallel machine, which compresses the data by reducing redun­

dancy. Parallel Dynamic Octal Compact Mapping (PDOCM) compresses at least 1 byte per word, compared with

other coding techniques, and achieves a 54.188-fold speedup with 64 processors to transmit 10 million characters.

요 약

본 논문은 redundancy를 제거함으로 해서 데이타의 축약을 할 수 있는 새로운 방법론 즉 병렬 컴퓨터인 MasPar 머쉰에

적합한 새로운 데이타 구조를 제시하고자 하는데 그 주된 목적이 있다. 이것을 실제로 구현한 결과，본 논문에 제시된 방법

인 PDOCM(Parallel Dynamic Octal Compact Mapping은 기존의 방법중 가장 효율이 좋은 것으로 나타난 Huffman 코드

와 비교할때는 평균적으로 30%정도, bit-mapping방법과 비교할때는 평균적으로 40% 정도의 우수성을 보였다• 그리고 10

백만개의 영문자를 이용해서 MasPar 기계에서 64개의 프로세서를 이용하여 구현시킨 결과 54.188의 가속화율을 얻으므로

서 우수한 방법임을 알 수가 있었다.

I. Introduction

Although we have so far been able to handle

with ease all the information in our society, it is

becoming increasingly necessary to transmit only

a minimal amount of data bits because of the

sheer volume of information being transmitted.

In developing this paper, we considered several

data-compression methods, but we elaborate here

on two of them : the bit-mapping technique and

the binary compact code. The bit-mapping tech­

nique produces a great compression effect when

there are many spaces in the source symbol

stream. The technique involves these procedures.

In the source symbol stream S = ! sb s2.....sq !,

PDOCM :MasPar머쉰상의 새로운 압축기법과 빠른 텍스트 축약 41

after determining the total number of all symbols,

we create a one-byte bit-map zone part. If the

source symbol is a blank, the bit-map zone

corresponds to 0 : otherwise, it corresponds to 1.

We 나len create the EBCDIC with the right side

of the bit-map zone. We proceed with this method

until the last symbol. In the source symbol

stream S = {sb s2,...,sq}, if sq is not the last 8th

symbol, (i.e.t q / 8*i where i 느1 and i is an

integer), the remaining part of the bit-map zone

is regarded as blanks. The compression rate of

this method is explained in [2].

The bit-mapping method deals with fixed-length

codes. The second method, called compact binary

code [2], deals with the variable code lengths of

different symbols. In this method, the symbol

that occurs infrequently in the text represents a

long code length whereas the symbol that occurs

frequently represents a short code length. The

binary compact code just described compresses

the data to 58% of its original length. This

method has a major disadvantages, however. If

the source symbols have many blanks, or there

are many symbols in the text that occur fre­

quently, this method requires more code lengths

in total. Despite this shortcoming, the binary

compact code technique is the best [2, 5, 6].

This paper suggests a new data-compression

technique that improves upon the binary compact

code method by overcoming the disadvantage of

longer code lengths. Our improved method, called

PDOCM was implemented on a parallel machine

such as the MasPar. In practice, PDOCM

achieved a 54. 188-fold speedup with 64 processors

to transmit 10 million source symbols.

The rest of this paper is organized as follows.

Secion II describes the sequential method of data

compression, and section III describes the parallel

method. Section IV includes the results of PDOCM

implementation, and section V presents our con­

clusions.

Given non-negative weights (wb w2,...,wn), we

can use the well-known algorithm of the Huffman

code to construct a binary tree with n external

nodes and n-1 internal nodes, where the external

nodes are labeled with weights (wlt w2,...,wn) in

increasing/decreasing order. Huffman's tree has

the minimum value of w」i+….+w』n over all

such binary trees, where lj is the level at which

wj occurs in the tree. Binary trees with n external

nodes are in one-to-one correspondence with sets

of n strings or {0, 1} [1]. For example, the binary

tree in Fig. 1 corresponds to the minimal code {0,

10, 110, 111}. In Fig. 1, Huffman's method

combines the two smallest weights w； and w〕(the

characters that have the lowest probabilities to

appear), replaces them by their sum Wj4- wj5 and

repeats this process until only one weight is left.

In this situation (Fig. 1), there is no way to dis­

tinguish weight 6 associated with symbol A from

weight 6 associated with symbol C and D. As a

consequence, this procedure may form two different

trees (Fig. 1 and Fig. 2), depending on where the

weight 6 that is associated with ‘2 + 4 = 6’ is

placed. Both trees are optimum for the given

weights, since

6X1 + 5X2 + 4X3 + 2X3 = 2X4 + 2X2 + 5X2

+ 6X2.

II. Sequential Method Fig. 1. Huffman Method

42
韓國音響學會誌 第14卷 第1號(1995)

We call this method a dynamic compact code

[1], This procedure reforms Huffman's tree

dynamically, in order to reduce the height of the

tree. If the weight 6 associated with A increases

to 7, Fig. 1 is better; but, if weight 2 associated

with D increases to 3, Fig. 2 is better. In the

average case, Fig. 2 is better even though it has

some disadvantages [1].

Fig. 2. Dynamic tree

To constr니ct Huffman's tree, we must go

through several steps. First, we investigate the

probabilities of each symbol in the context in

order for it to correspond to the character. This

exercise proves that the statistical data of 1

million characters from arbitary text is suitable

for this purpose. As a result, we know that one

word has 8 symbols ; that is, we need at least 3

bits (23 = 8) to represent one word. A new data

structure is thus formed, which is supported in

dynamic octal-compact mapping as follows (see

Fig. 3).

The data structure of PDOCM consists of two

parts. First, there is a zone part which has two

subparts. One is a check bit (1 bit), and the other

I丨I I I丨丨I I丨
I__ 11_____ 11------------------------------ 1
check the number of dynamic huffman code which is
Eit transmitt曹 per a word practically transmitted 〕

zone part data part

Fig. 3. The data structure of PDOCM

consists of 3 data bits representing one word. If a

check bit is 0 (i.e., its corresponding word is a

blank), a rest of 3 bits in its zone part represents

the number of blanks to be transmitted. This

method is not considered in the dynamic compact

code. If the symbol is not a blank, in the first

part of the new data structure, 1 is placed to the

check bit and the number of the symbol is placed

to the data bits. The data part, which is the sec­

ond part of the new data structure, represents

the number of symbols that are practically

transmitted. For example, text data "AB□口口口

CDM(where □ represents a blank symbol) is repre­

sented by the dynamic octal-compact method as

follows :

1010 10 11 0100 1010 00 01
I_I l_l I—I I_I I_I 1—1 I—I
zone A B zone zone C D

This structure combines the space-compression

advantage of the bit-mapping method with, the

advantage of describing the variable code length

of each symbol (binary compact code), and the

advantage of eliminating spaces (the octal-compact

mapping method). Its practical code is equal to a

dynamic compact code except that PDCOM

excludes spaces and introduces a new data struc­

ture.

Given the data structure above, it is not difficult

to design pseudo-algorithms of the binary code

tree as follows.

procedure binarycodetree (float p)

/♦the source S with symbols {Sb S2,...fSq} and

symbol probabilities {Pb P2,…,Pq}*/

begin

(l)Let the symbols (except blank symbol) be

ordered so that P】 그 P2 느 그 Pq

PDOCM :MasPar머쉰상의 새로운 압축기법과 빠른 텍스트 축약 43

(2) We assigned the words 0 and 1 to the last

sequence

(3) Combine the last two symbols of S into one

symbol

(4) Search back from the last sequence to the

original sequence through the reduced sources

(5) Repeat (2)-(4) until there left only two symbols

codes

end

The total time for the procedure binarycodetree

requires O(n log n) to construct the binary code

tree. Step 1 requires O(n log n), which is the

time complexity of the best sorting algorithm

such as Quicksort or Mergesort [31. Step 2

requires 0(log n), which constructs the tree.

Step 3 takes a constant time ; and step 4 takes O

(1), where 1 is the level of the tree.

We construct a dynamic Huffman tree from the

binary code tree as follows [1].

procedure dynamictree

begin

(1) Represent a binary code tree with weights in

each symbol

(2) Maintain a linear list of symbols, in nodecreasing

order by weight

(3) Find the last symbol in this linear list that has

the same weight as a given symbol

(4) Interchange two subtrees of the same weights

(5) Increase the weight of the last node in some

block by unity

(6) Represent the correspondance between letters

and external symbols

end

This procedure requires 0(n) : that is, a binary

code tree is constructed by steps 1 and 2 in the

same manner as the above procedure binaryco­

detree. Step 3 takes O(log n), which traverses

the tree. Steps 4 and 5 require 0(1), which

updates an element at level 1 of the tree and step

6 requires 0(n). Together, the steps require an

overall 0(n) time.

ID. Parall이 Dynamic Octal-Compact Mapping

In this section, we describe the improved parallel

method referred to in the last section. The Parallel

Dynamic Octal-Compact Mapping method (PDO­

CM) has three phases that compress the source

symbols. In the first phase, the binary code tree

is constructed from raw source symbols, each of

which have a probability. Before constructing of

the binary code tree, one has to consider the

number of processors that are going to be used on

the machine. In this situation, there are three

cases. P, the number of processors, is less than,

equal to, or greater than the number of symbols

at level 1, which contains either all the symbols or

part of the symbols..

If P is greater than or equal to the number of

symbols at level 1, then each processor at level i

is connected to a single parent processor at level

i-1 and to each of its two child processors at level

i +1, except for the root processor at level 0

(which has no parent) and the leaf processor at

level d-1 (which has no children). If P is less

than the number of symbols at level 1, then each

processor at level i can be connected to either the

same or a different parent processor. Afterward,

we use the processor to construct the binary code

tree described in the previous section.

Let us consider step 1 in the procedure of the

binarycodetree. In that case, we use the parallel

algorithms to sort the sequence S = {xb x2,...,xn}

of distinct probabilities in increasing order [3].

This method requires n1-e processors, where 0〈e

<1 runs in 0(ne log n) time. In steps 2 through 5,

the code is produced using the same method as

the parallel tree construction. It requires 0(log

n), which supports the code. A pseudo-algorithm

of this method is as follows.

procedure firststepinparallel

begin

44 韓國音響學會誌第14卷第1號(1995)

(1) Parallel quicksort using each probability

(2) for (traverse from the root to leaves) do in

parallel

(2.1) We assigned each processor's word 0 or 1

(2.2) Search previous two symbols of S which

were combined as one symbol

alifor

end

The second phase is analogous to the first. Th으

second step only requires exchanging the two

subtrees of the same weights different processors

have. It is quite simple to implement. This pha으e

requires 0(1) to update an element at level 1 of

the tree.

In 나治 third phase, we encode oi decode the

text data from the dynamic octal-compact mapping

code. In 나lis phase, each processor reads the text

data to determine whether the charact은【read is 저

blank symbol or not. If the character is a blank,

나check bit in the zone part is set to 0. The fol­

lowing code would not be set since there is no

code for a blank symbol. If the check bit is 1,

however, we set the following part as a dynamic

compact code of the character. This procedure

processes by the word which includes, at most, 8

symbols. If a word exceeds 8 symbols, it is 으plit

by 8 symbols. If the last word has fewer than 8

symbols, however, we process it with words that

have at least 8 symbols. This pseudo-algorithm,

which is implemented by O(n/p) time in each

processor, is as follows,

procedure thirdstepinparallel
/« n- the size of text data,

p； the nutaber of processors •/
begin

fpr(l=p«Ln/pj to ((p+l)sln/pj)-l) do in parallel
p^readtone character in text data)
if (the 叫此。」 read is a blanK) then

repeat
character count; p-read(one character)；

until (syiabol read is not blanK>:
은 L&e

repeat
character count; p-r으ad«m으 character)；

until (syinbol read is a blank)；
endif
if(the number of counts exceed 9) then

zi 18 the number of counts div 8+1
coustruct the zone part has a value of i or zi
satisfying zi's value

alifor
end

W、Experimental Res나I治

To implement the PDOCM on the MasPar, we

tested randomly generated text sentences with

various distributions. To find the probabilities of

each symbol, we extracted 10 million characters

from a random text. The probability of each symbol

was computed to create the statistical data used

in the previous section. The result of the dynairnc

compact tree is shown in Fig, 4. The size of the

sentences to be compressed ranged from 0.01

million to 10 million symbols. Experiments were

conducted using each of 1, 2, 4, 8, 16, 32, and 64

processors on the Mas Par machine. Each data

point presented in this section was obtained from

the average of one program's execution. Each

processed 10 million ch거racters.

lb) dynamic compact tree
Fig. 4. Dynmic Huffman tree

PDOCM:MasPar머쉰상의 새로운 압축기법과 빠른 텍스트 축약 45

We have developed a progran that provides the

optinal seguential DOCM. The time was used on

one processor. It needs the speedup which eraluates

a new data-compression method for some problems.

The speeduptl] is defined as the time elapsed

from the moment the algorithn stats to the moment

it termioates. It is reasonable to assume that the

time of data compression using seguetial DOCM

is one PE :

tpe(n) = (nlog n)

where c is a constant independent of sizen.

seguential times for lists of more than 0.2 million

elements were calculated using the fornula :

皿)=而扁쁘濫/(g),

where 0.02 million n 10 million and tpe(100,

000) =0.62 seconds. Note that if one uses this

formula to compute tpe(200,000), the result is

almost a perfect match with the corresponding

experimental time.

Table 1 shows the time required to compress

the data using PDOCM, and Fig. 5 plots the

speedups achieved. As the problem size increases,

task granularity increases. Offsetting the overheads

of the algorithms results in better speedup. Com­

pression of 10 million text data with 64 processors

yielded a 54.188-fold speedup, compared with

what can be achieved with only one processor.

This method was implemented in each processor's

local memory. Global memory was used to com­

municate the code.

Fig. 5. Speedup of PDOCM

Table 1. Time to compress using PDOCM(unit:second)

n PE 1 2 4 8 16 32 64

100,000 0.62 0.364 0.139 0.056 0.025 0.0214 0.0196

200,000 1.23 0.645 0.306 0.140 0.058 0.0438 0.0398

400,000 2.35 1.347 0.641 0.307 0.142 0.108 0.0765

800,000 4,59 2.797 1.663 0.742 0.305 0.1992 0.1389

1,000,000 5.69 - 1.610 0.791 0.384 0.2578 0.1689

2,000,000 11.15 - - 1.607 0.923 0.379 0.3068

4,000,000 22.38 - - 一 1.736 0.795 0.6579

8,000,000 44.62 一 - 一 一 1.760 1.294

10,000,000 56.74. 一 - - 一 - 1.2841

46 韓國音響學會誌 第14卷 第1號(1995)

(a) the probability of each symbol

PROBABILITY CODE PROBABILITY CODE

E .09684 111 7.61E-03 1000010

T .07907 0010 K 7.61E-03 1000011

N .06833 0101 1 2.73E-03 001101010

A .0654 0110 $ 2.E-03 010011000

I .05974 0111 1.95E-03 010011000

0 .0574 1001 - 1.95E-03 010011011

R .05154 1100 X 1.56E-03 0011010001

S .05154 1101 9 L37E-03 0011010011

H .03631 00111 1.17E-03 0011010111

L .02714 10001 0 9.8E-04 0100110011

D .02675 10100 J 9.8E-04 00110100000

G ,02655 10111 8 7.8E-04 00110100001

C .02578 001100 3 5.9E-04 00110100101

M .02011 010000 z 5.9E-04 00110101100

U .01952 010001 % 5.8E-04 01001100100

P .01679 010010 4 3.9E-04 001101001000

Y .0164 100000 7 3.9E-04 001101001001

F .01542 101100 Q 3.9E-04 001101011010

W .01308 101100 2 2E-04 001101011011

8B .01289 001101 5 2E-04 010011001010

8.39E-03 0011011 6 2E-04 010011001011

V 7.81E-03 0100111

V, Concision

Table 2 shows the entropy for each of the

techniques. In practice, with 10 million data on 64

processors, we used 4.08 bits per symbol, whereas

the OCM method [5] uses 4.28 bits and the

Huffman code uses 4.99 bits. Processing a word

of 8 symbols (that is, the average length of a

word), we show that the PDOCM method com­

presses at least 1 byte (in the average-case). In

the worst-case, the bit-mapping method compresses

3 bytes.

In conclusions, PDOCM reduces redundancy so

that we can send and receive more data with a

minimal number of bits. Error-detection problems

on the transmission line were not considered in

this research.

Table 2. Comparison with other methods (unit: bytes)

method worst­

case

best­

case

average-

cdase

Bit-mapping 9 1 5

Huffman Code 12 3 4.5

OCM 13 1 3.5

our Method 12 1 3.0

References

1. Kunth, Donald E., “Dynamic Huffman Coding/

PDOCM :MasPai■머쉰상의 새로운 압축기법과 빠른 텍스트 축약

Journal of Algorithm, vol. 6, no. 2, pp. 163-180,

June, 1985

2. S. Roman, Coding and Information Theory,

Springer-Verlag, 1992

3. Akl, Selim G. , Parallel Sorting Algorihtms, Aca­

demic press, 1985

4. Bookstein, A. and Klein, S. T., uIs Huffman Coding

Dead/ Proceedings of Data Compression, IEEE, p.

464, 1993

5. Kim, K. T. and Min, Y. S., "A Study on the Com­

position of Compact Code using OCM,” Journal of

KCI, vol. 9, no. 3, pp. 103-107, 1984

6. Kim, K. T. and Min, Y. S., MA Study on an

Efficient Coding of Hanguel/ Journal of KCI, vol.

14, no. 6, pp. 533-641, 1987

47

▲민 용 식 (Yong Sik Min)

1981 년 2월 : Dept, of Computer

Science, Kwang-

woon Univ. (B.S.)

1984년 2월 : Dept, of Computer

Science, Kwang-

woon Univ. (M.S.)

1991 년 2월 : Dept, of Computer

Science, Kwang-

woon Univ. (Ph.D)

1984년 3월 〜 1987년 2월 : Full-time lecturer, Song­

won Junior College Dept, of Computer

Science

1987년 3월 : present: Associate Professor, Hoseo

Univ. Dept, of Computer Science

1993년 8월 〜 1994년 8월 : Visiting Professor, Loui­

siana State Univ. Dept, of Computer

Science

