40

PDOCM : Fast Text Compression on MasPar Machine
PDOCM : MasPar®j g 4e] Aj2& ¢=7|9 3 W dlAE Zof

Yong Sik Min*
IR - e

Abstract

Due to rapid progress in data communications, we are able to.acquire the information we need with ease. One
means of achieving this is a parallel machine such as the MasPar. Although the paralle]l machine makes it possible
to receive/transmit enormous quantities of data, because of the increasing volume of information that must be
processed, it is necessary to transmit only a minimal amount of data bits.

This paper suggests a new coding method for the parallel machine, which compresses the data by reducing redun-
dancy. Parallel Dynamic Octal Compact Mapping (PDOCM) compresses at least 1 byte per word, compared with
other coding techniques, and achieves a 54.188-fold speedup with 64 processors to transmit 10 million characters,

2 o

B =28 redundancy® A AELZ A dojete] Foke # 5 e Q=L HHE F, W7 AFE A MasPar o1 o
Hgs G2 volet FEE AAHLA sted I 78 S40] ok, o1RNE ARZ FAY Ao, & =) ANE ¥
ol PDOCM (Parallel Dynamic Octal Compact Mapping)& 71&9) Wi 3 713 §-&¢] $& R2E Yehd Huffman I &
9 ¥ EY= BFHO 2 30%YE, bit-mappingP AT M nTaE YFHOR 40% FE $59¢ B 121 10
Wt e] REAE o] §3MA MasPar 71 Ao)A 64708 T2 MG o] &ste]l PR 27 54.1889) 7H&HE S deoR
A 5 PEYs ¢ 7 AN

I . introduction

Although we have so far been able to handle
with ease all the information in our society, it is
becoming increasingly necessary to transmit only
a minimal amount of data bits because of the

IR WA GG
HrY=1995d 1€ 94

sheer volume of information being transmitted,

In developing this paper, we considered several
data-compression methods, but we elaborate here
on two of them :the bit-mapping technique and
the binary compact code. The bit-mapping tech-
nique produces a great compression effect when
there are many spaces in the source symbol
stream, The technique involves these procedures.

In the source symbol stream S=!s;, su....54.

PDOCM : MasParil 8 92) MZ& 457195 HE RAE S

after determining the total number of all symbols,
we create a one-byte bit-map zone part. If the
source symbol is a blank, the bit-map zone
corresponds to §:otherwise, it corresponds to 1.
We then create the EBCDIC with the right side
of the bit-map zone, We proceed with this method
until the last symbol. In the source symbol
stream S ={s,, sy...,5,}, if sq is not the last 8th
symbol, (i.e., q#8+i where 121 and i is an
integer), the remaining part of the bit-map zone
is regarded as blanks, The compression rate of
this method is explained in [2].

The bit-mapping method deals with fixed-length
codes, The second methaod, called compact binary
code {2], deals with the variable code lengths of
different symbols. In this method, the symbol
that occurs infrequently in the text represents a
long code length whereas the symbol that occurs
frequently represents a short code length, The
binary compact code just described compresses
the data to 58% of its original length, This
method has a major disadvantages, however. If
the source symbols have many blanks, or there
are many symbols in the text that occur fre-
quently, this method requires more code lengths
in total. Despite this shortcoming, the binary
compact code technique is the best [2, 5, 6].

This paper suggests a new data-compression
technique that improves upon the binary compact
code method by overcoming the disadvantage of
longer code lengths, Qur improved method, called
PDOCM was implemented on a parallel machine
such as the MasPar. In practice, PDOCM
achieved a 54. 188-fold speedup with 64 processors
to transmit 1¢ million source symbols.

The rest of this paper is organized as follows.
Secion 1I describes the sequential method of data
compression, and section III describes the parallel
method, Section IV includes the results of PDOCM
implementation, and section V presents our con-
clusions,

[I. Sequential Method ~

41

Given non-negative weights (wy, Ws,...,W,}, we
can use the well-known algorithm of the Huffman
code to construct a binary tree with n external
nodes and n-1 internal nodes, where the external
nodes are labeled with weights (w;, w,...,w,) in
increasing/decreasing order, Huffman's tree has
the minimum value of w,l+.... +w,l, over all
such binary trees, where |; is the level at which
w; occurs in the tree. Binary trees with n external
nodes are in one-to-one correspondence with sets
of n strings or {0, 1} [1]. For example, the binary
tree in Fig. 1 corresponds to the minimal code {0,
10, 110, 111} In Fig. 1, Huffman's method
combines the two smallest weights w; and w, (the
characters that have the lowest probabilities to
appear), replaces them by their sum w,+w,, and
repeats this process until only one weight is left,
In this situation {Fig, 1), there is no way to dis-
tinguish weight & associated with symbol A from
weight 6 associated with symbol C and D, As a
consequence, this procedure may form two different
trees (Fig. 1 and Fig. 2), depending on where the
weight 6 that is asscciated with ‘2+4=6" is
placed. Both trees are optimum for the given
weights, since

6X1+5X2+4X34+2X3=2X4+2X2+5X2
+6X2.

4 2
(¢c) (D)

Fig. 1. Huffman Method

42

We call this method a dynamic compact code
[1]. This procedure reforms Huffman's tree
dynamically, in order to reduce the height of the
tree. If the weight 6 associated with A increases
to 7, Fig. 1 is better : but, if weight 2 associated
with D increases to 3, Fig. 2 is better. In the
average case, Fig. 2 is better even though it has
some disadvantages [11].

4 2 5 6
(C) (D)} |(R) (B)

Fig. 2. Dynamic tree

To construct Huffman's tree, we must go
through several steps. First, we investigate the
probabilities of each symbol in the context in
order for it to correspond to the character. This
exercise proves that the statistical data of 1
million characters from arbitary text is suitable
for this purpose. As a result, we know that one
word has 8 symbols ; that is, we need at least 3
bits (23=8) to represent one word. A new data
structure is thus formed, which is supported in
dynamic octal-compact mapping as follows (see
Fig. 3).

The data structure of PDOCM consists of two
parts. First, there is a zone part which has two
subparts, One is a check bit (1 bit), and the other

RBEEYERE B14%E £1RA95)

1 O

L JL)% !

check the number of dynapic bufiman code which is
lizt t.ransnittﬂ per a word practically trangaitted

Z0ne part data part

Fig. 3. The data structure of PDOCM

consists of 3 data bits representing one word. If a
check bit is 0 {i.e., its corresponding word is a
blank), a rest of 3 bits in its zone part represents
the number of blanks to be transmitted. This
method is not considered in the dynamic compact
code. If the symbol is not a blank, in the first
part of the new data structure, 1 is placed to the
check bit and the number of the symbol is placed
to the data bits, The data part, which is the sec-
ond part of the new data structure, represents
the number of symbols that are practically
transmitted, For example, text data “ABOO0ONO
CD”(where Orepresents a blank symbol) is repre-
sented by the dynamic octal-compact method as
follows :

1010 10 11 0100 1010 00 01
L J 0 —d s
zone A B zone zone C D

This structure combines the space-compression
advantage of the bit-mapping method with, the
advantage of describing the variable code length
of each symbol (binary compact code), and the
advantage of eliminating spaces (the octal-compact
mapping methad). [ts practical code is equal to a
dynamic compact code except that PDCOM
excludes spaces and introduces a new data struc-
ture.

Given the data structure above, it is not difficult
to design pseudo-algorithms of the binary code

tree as follows.

procedure binarycodetree{float p)

/*the source S with symbols {S,, S,.....Sq} and

symbol probabilities { Py, Py,...,Pq}*/

begin

(1) Let the symbols{except blank symbol} be
ordered so that Py 2P, > 2 P4

PDOCM :MasParo] 249} 28 25743t el @ 2E Fof

(2) We assigned the words 0 and 1 to the last
sequence

(3) Combine the last two symbols of S into one
symbol

(4) Search back from the last sequence to the
original sequence through the reduced sources

{5) Repeat (2)-(4) until there left only two symbols
codes

end

The total time for the procedure binarycodetree
requires O(n log n) to construct the binary code
tree, Step 1 requires O(n log n), which is the
time complexity of the best sorting algorithm
such as Quicksort or Mergesort [3]. Step 2
requires Ollog n), which constructs the tree.
Step 3 takes a constant time : and step 4 takes O
(1), where 1 is the level of the tree,

We construct a dyvnamic Huffman tree from the
binary code tree as follows [1].

procedure dynamictree

begin

{1) Represent a binary code tree with weights in
each symbol

{2) Maintain a linear list of symbols, in nodecreasing
order by weight

(3) Find the last symbol in this linear list that has
the same weight as a given symbol

(4) Interchange two subtrees of the same weights

(5) Increase the weight of the last node in some
block by unity

(6) Represent the correspondance between letters
and external symbols

end

This procedure requires O(n) : that is, a binary
code {ree is constructed by steps ! and 2 in the
same manner as the above procedure binaryco-
detree. Step 3 takes O{log n), which traverses
the tree, Steps 4 and 5 require O(1), which
updates an element at level | of the tree and step
6 requires O(n}. Together, the steps require an

overall O(n) time,
fil. Parallel Dynamic Octal-Compact Mapping

In this section, we describe the improved parallel
method referred to in the last section, The Parallel
Dynamic Octal-Compact Mapping method (PDO-
CM) has three phases that compress the source
symbols, In the first phase, the binary code tree
is constructed from raw source symhols, each of
which have a probability. Before constructing of
the binary code tree, one has to consider the
number of processors that are going to be used on
the machine, In this situation, there are three
cases, P, the number of processors, is less than,
equal to, or greater than the number of symbols
at level 1, which contains either all the symbals or
part of the symbols.

If P is greater than or equal to the number of
symbols at level §, then each processor at level i
is connected to a single parent processor at level
i-1 and to each of its two child processors at level
i+1, except for the root processor at level 0
{which has no parent) and the leaf processor at
level d-I {which has no children). If P is less
than the number of symbols at level |, then each
processor at level i can be connected to either the
same or a different parent processor, Afterward,
we use the processor to construct the binary code
tree described in the previous section,

Let us consider step 1 in the procedure of the
binarycodetree. In that case, we use the parallel
algorithms to sort the sequence S =1{x,, X,,....X,}
of distinct probabilities in increasing order {3].
This method requires n!~* processors, where 0<e
{1 runs in O{n® log n) time. In steps 2 through 5,
the code is produced using the same method as
the paralle! tree construction. It requires O{log
n), which supports the code. A pseudo-algorithm
of this method 1s as follows,

procedure firststepinparaliel
begin

44

{1) Parallel quicksort using each probability

(2) for{traverse from the root to leaves} do in
parallel
{(2.1) We assigned each processor's word 0 or 1
(2.2) Search previous two symbols of S which

were combined as one symbol
atifor
end

The second phase is analogous o the first, The
second step only requires exchanging the two
subtrees of the same weights different processors
have. It is quite simple to implement. This phase
tequires O{1) to update an efement at level { of
the free,

in the third phase, we encode or decode the
text data from the dynamic octal-compact mapping
code. In this phase, each processor reads the text
data to determine whether the character read is 2
blank symbol or not. If the character is a blank,
the check bit in the zone part is set to 0. The foj-
lowing code would not be set since there is no
code for a biank symhol. If the check bit is 1,
however, we set the following part as a dynamic
compact code of the character. This procedure
processes by the word which includes, at most, §
symbols. 1f a word exceeds 8 symbols, it is split
by 8 symbols. 1f the last word has fewer than 8
symbols, however, we process it with words that
have at least § symbols. This pseudo-algonithm,
which is implemented by O{(n/p) time in each
processor, s as follows,

procedure thirdstepinparallel
7¢ n: the size of text data,
p: the pumber of processors ®/
begin
forli=psjn/p) ro {(p+1)2lo/p))-1) &0 in parallel
peread(one character in text data)
iflthe symbol read is & blank) then
repeat
character count: p-resd{one character):
wntil (5ymbel read is a0t Plank):
else
repeat
character count: p-resd{one character);
until { symbol read is a blenk}:
endif
if{the nuzber of counts exceed 8) then

BHESREE B14% $15(195)

2 = the muber of counts Aiv 8 + £
coustruct the zone part which has a value of i or 21
satistying zi' 3 value
alifor
end

. Experimental Results

To implement the PDOCM on the MasPar, we
tested randomly generated text sentences with
vanous distributions, To find the probabilities of
each symbol, we extracted 10 million characters
from a random text, The probability of each symbo}
was computed to create the statistical data used
in the previous section. The result of the dynamic
compact tree is shown in Fig, 4. The size of the
sentences to be compressed ranged from 0,01
million to 10 miflion symbols, Experiments wete
conducted using each of 1, 2, 4, 8, 16, 32, and 64
processors on the MasPar machine. Each data
point presented in this section was obtained from
the average of one program’s execution. Each
processed 10 million characters,

.

\\

/}/\,

VA
7Y

\

-

)
.'/'\:)

A
{
N SR
l/\l 0 [

i f

(b) dynamic compact tree
Fig. 4. Dynmi¢ Huffman tree

PDOCM : MasParol 4148 A28 57103 #E dLE S

We have developed a progran that provides the
optinal seguential DOCM. The time was used on
one processor, It needs the speedup which eraluates
a new data-compression method for some problems,
The speedup[1] is defined as the time elapsed
from the moment the algorithn stats to the moment
it termioates, It is reasonable to assume that the
time of data compression using seguetial DOCM
isone PE:

tpe(n) = {nlog n)

where ¢ is a constant independent of sizen.
seguential times for lists of more than 0,2 million
elements were calculated using the fornula :

nlog n

t = ——————
re (1) = 7557000 fog 100,000

* £ (100,000},

where 0.02 million<n <10 million and t,(100,
000) =0.62 seconds. Note that if one uses this
formula to compute t,.(200.000), the result is
almost a perfect match with the corresponding
experimental time,

Table 1 shows the time required to compress
the data using PDOCM, and Fig. 5 plots the
speedups achieved. As the problem size increases,
task granularity increases. Offsetting the overheads
of the algorithms resuits in better speedup, Com-
pression of 10 million text data with 64 processors

45

vielded a 54.188-fold speedup, compared with
what can be achieved with only one processor.
This method was implemented in each processor’s
local memory. Global memory was used to com-
municate the code,

Fig. 5 Speedup of PDOCM

Tabte 1. Time to compress using PDOCM (unit :second)

n PE 1 2 1 s | 16 2 | 6
100000 | 0.62 | 0364 | 0.139 | 00% | 0.025 | 0.0214 | 0.019
200,000 | 123 | 0645 | 0.306 | 0.140 | 0058 | 0.0438 | 0.0398
00000 | 235 | 1347 | 0641 | 0307 | 0142 | 0108 | 00765
800,000 | 459 | 2767 | 1.663 | 074z | 0.305 | 0.1992 | 0.1389
1,000,000 { 5.69 - 1620 | 0.791 | 0384 | 0.2578 | 0.1689
2,000,000 | 1L.15 - - 1607 | 0.923 | 0.319 | 0.3068
4,000,000 | 22.38 - - - 1736 | 0.795 | 0.6579
8,000,000 | 44.62 - - - - L760 | 1.294
10,000,000 | 5674 | - - - - - | 128m

46 ROENBEE B1UE ¥ 19(195)
PROBABILITY | CODE PROBABILITY CODE

E | .09684 111 7.61E-03 1000010

T | 07907 0010 K 7.61E-03 1000011

N | .06833 | o101 2.73E-03 001202010

A | .0654 0110 $ 2.E-03 010021000

1 | 05974 0 1L95E03 | 010011000

0 | .0574 1001 - LSE03 | 010031011

R | .05154 1100 X LS6E03 | 001101000t
s | .05154 1101 g 1.37E-03 0011010011
H {03631 00111 : LI7E03 | 0012010111
L | .0z714 10001 0 9.8E-04 030011001
D | .02675 10100 j 9.8E-04 (0110106000
G | .02655 10111 8 7.8E-04 00110100001
c | .07 001100 3 5.9E-04 00110100101
M | .0201 010000 z 5.98-04 00110101100
U | .01952 010001 % 5.8E-04 01001100100
P | 01679 010010 4 3.98-04 001101001000
Y | o164 100000 7 3.95-04 001101001001
F | .01562 101100 Q 3.9E-04 001101011010
W | o138 101100 2 2B-04 00110103 101§
8B | .01280 001101 5 2E-04 010011001010
. | 8.30E03 Jooon |6 PE04 | 01001100101
V | 7.81E-03 | 0100111

{a) the probability of each symbol

V. Conclusion

Table 2 shows the entropy for each of the
techniques. In practice, with 10 million data on 64
processors, we used 4.08 bits per symbol, whereas
the OCM method [5] uses 4.28 bits and the
Huffman code uses 4.99 bits, Processing a word
of 8 symbols {(that is, the average length of a
word), we show that the PDOCM method com-
presses at least 1 byte (in the average-case). In
the worst-case, the bit-mapping method compresses
3 bytes.

In conclusions, PDOCM reduces redundancy so
that we can send and receive more data with a
minimal number of bits. Error-detection problems

on the transmission line were not considered in
this research.

Table 2. Comparison with other methods (unit :bytes)

method worst- best- average-
case case cdase
Bit-mapping g 1 5 |
Huffman Code 12 3 45
OCM 13 1 3.5
our Method 12 1 3.0
References

1. Kunth, Donald E., “Dynamic Huffman Coding,”

PDOCM : MasParm Q4¢) M 2& & 787 M& e AE Zo} 47

Journal of Algorithm, vol. 8, no. 2, pp. 163-180, A 2 Al(Yong Sik Min)
June, 1985 1981 24 : Dept. of Computer

2. S, Roman, Coding and Information Theory, Science, Kwang-
Springer-Verlag, 1992

3. Aki, Selim G. , Parallel Sorting Algorihtms, Aca-
demic press, 1985

4. Bookstein, A. and Klein, S. T., “Is Huffman Coding
Dead,” Proceedings of Data Compression, IEEE, p.
464, 1993

woon Univ,(B.S.)
198413 29 : Dept, of Computer
Science, Kwang-
woon Univ (M S.)
1991 24¥ : Dept. of Computer

S. Kim, K. T. and Min, Y. S., “A Study on the Com- Science, Kwang-
position of Compact Code using OCM,” Journal of woon Univ_(Ph.D)
KCI, vol. 9, no. 3, pp. 103-107, 1984 19841 3¢ ~1987'd 24 : Full-time lecturer, Song-

6. Kim, K. T, and Min, Y. S., “A Study on an won Junior Coliege Dept. of Computer

Efficient Coding of Hanguel,” Journal of KCI, vol.
14, no. 6, pp. 533-641, 1987

Science
1987'd 39 : present : Associate Professor, Hoseo
Univ. Dept. of Computer Science
199343 8¢ ~1994\3 8% : Visiting Professor, Loui-
siana State Univ. Dept. of Computer
Science

