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RECURRENT POINTS OF THE CIRCLE MAP

*SEONG HooN Cuo, KyunG JIN MIN AND SEUNG KAB YANG

ABSTRACT. In this paper, we study the inclusion realtion between
recursive sets. And we prove that if R(f) \ R(f) is not empty, then it
is infinite, and we characterize the necessary and sufficent condition

for which R(f) \ R(f) is countable.

1. Introduction

Let I be the unit interval, S the circle and X be a topological
space. And let C°(X,X) denote the set of continuous maps from X
into itself.

Let f € C°(X,X). For any positive integer n, we define f* induc-
tively by f! = f and f**! = fo f*. Let f° denote the identity map
of X.

For any f € C°X,X), let P(f), R(f), A(f), I'(f) and Q(f)
denote the set of periodic points, recurrent points, w-limit points,
v-limit points and nonwandering points of f, respectively.

Let Y be a subset of I. Y4 denotes the right-side closure, and ¥ _
denotes the left-side closure of Y. Forany f € C°(I,I), J. C. Xiong [4]
proved that (P(f), N P(f)_) C T(f). And also characterized [3] the
necessary and sufficient condition for which _R_(f_)\R( f) is countable,
and proved that if R(f) \ R(f) is not empty, then it is infinite.

In this paper, we obtain the following similar results for maps of

the circle:
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THEOREM A. Let f e C°(S',S'). Then we have

(R(f)4 N R(f)_) CT(f).

THEOREM B. Let f € C°(S!,S'). If R(f) \ R(f) is not empty,

then it is infinite.

THEOREM C. Let f € C°S1,S'). Then the followings are equiv-
alent
(1) R(f)\ R(f) is countable.
(2) T(f) \ R(f) is countable.

(3) (R(f); NR(f)_)\ R(f) is countable.

2. Preliminaries and definitions

Let (X, d) be a metric space and f € C%X,X). A point z € X is
called a periodic point of f if for some positive integer n, f*(z) = z.
The period of z is the least such integer n. We denote the set of
periodic points of f by P(f).

A point z € X is called a recurrent point of f if there exists a
sequence {n;} of positive integers with n; — oo such that f"i(z) —
z. We denote the set of recurrent points of f by R(f).

A point z € X is called a nonwandering point of f if for every
neighborhood U of z, there exists a positive integer m such that
f™U)NU # ¢. We denote the set of nonwandering points of f by
Q(f).

A point y € X is called an w-limit point of z if there exists a
sequence {n;} of positive integers with n; — oo such that f*(z) — v.
We denote the set of w-limit points of & by w(z). Define A(f) =

U w().
zeX .
A point y € X is called an a-limit point of =z if there exist a

sequence {n;} of positive integers with n; — co and a sequence {y;}
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of points such that f*(y;) = = and y; — y. The symbol a(z) denotes
the set of a-limit points of z.

A point y € X is called a y-limit point of z if y € w(z) N a(z).
The symbol ~(z) denotes the set of 4-limit points of z and I'(f) =

U ().

z€X
We will use the symbols wy(z) ( resp. w—(z)) to denote the set of

all points y € X such that there exists a sequence {n;} of positive
integers with n; — oo such that f*(z) > yand y <--- < f*(z) <
< ) < fre) (resp fM(@) < () <o < () <
«+- <y ). It is clear that if 2 ¢ P(f), then w(z) = w4(z) Uw_(z).
Define A4(f) = U w4(z) and A_(f) = | w-(z).

z€X zeX
Let Y be an arc in S, and let Y denote the closure of Y as usual.

A point y € X is called a right-sided ( resp. left-sided ) accumulation
j)oint of Yifforany z € X, (y,2) NY # ¢ (resp. (z,y)NY # ¢ ).

The right-side closure Y + ( resp. left-side closure Y _ ) is the union
of Y and the set of right-sided ( resp. left-sided ) accumulation points
of Y. A point which is both a right-sided and a left-sided accumulation
point of Y is called a two-sided accumulation point of Y.

The forward orbit Orb(z) of = € X is the set {f¥(z) | k =
0,1,2,--- }. Usually the forward orbit of z is simply called the

orbit of =z.

3. Main Results

The idea of the proof of the following lemma is due to [3].

LEMMA 1. Let f € C%(S',S'). Then the set (R(f), \ R(f)_)U
(R(f)_ \ R(f) 4) Is countable.

PROOF. For eaf(;h y € (R(f); \ R(f)_), there exists vy € S* such
that (vg,y) N R(f) = 6. The family {(vy,9)ly € B, \ R(F))

is countable because it is disjoint. Hence R(f), \ R(f)_ is count-
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able. Similarly, R(f)_\ R(f) 4+ is also countable. Therefore (R(f) +\
R(H_HUR)_\ R(f),) is countable. '

The following proposition found in [2]

PRPOPOSITION. Let f € C°(S?,S1). Then we have

P(f) C R(f) CT(f) C R(f) C A(f) C Qf).

The following lemma found in (2]

LEMMA 2. Let f € C°(S*,S) and I =|a,b] be an arc for some
a,be S' with a#b, and let INP(f) = ¢.
(a) Suppose that there exists x € I such that f(z) € I and
z < f(z). Then
(1) ifyel, fly) €I, z <y and f(y) <y, then [z,y] f-covers [f(z),D],
and
(2) if yel,f(y) ¢ I and
(i) y <z, then [y,a] f-covers [f(z), f(y)]-
(ii) z <y, then [z,y] f-covers[f(z),f(y)].
(b) Suppose that there exists « € I such that f(z) € I and
z > f(z). Then
(1) ifyel, fly) eI, y<az and y < f(y), then [z,y] f-covers [a, f(2)],
and
(2) if yel, f(y) ¢ I and
(i) y < z, then [y,z] f-covers[f(y), f(z)]
(ii) ¢ <y, then [z,y] f-covers[f(y),f(z)].

The following lemma found in [5]

LEMMA 3. Let f e C°(S*, S'). Then we have

(1) R(f)4 \ R(f) C A+(F)

(2) R(f)_\R(f) C A-(F).
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THEOREM A. Let f € C°(S',S'). Then we have (R(f), N

R(f).) cT(f)-

Proor. If P(f) = ¢, then we have drsired result since R(f) =
L'(f) [5]). Suppose P(f) # ¢. If z € R(f), then obviousely z € T'(f).
Let z € (R(f), N R(f)_) \ R(f). Then there exists a,b € S* with
a < b such that z € (a,b) and (a,b) N Orb(z) = ¢. By Leamma 3,
z € A+(f) N A_(f). Hence there exist y;,y2 € S! such that a <
Y1 < z < yp < b with z € w(y1) Nw(ys). Since P(f) = R(f), z €
(P(f); N P(f)_) \ P(f)- There exists u; of periodic point of f with
a<y <u <uz <---<zandu; — z. Let p; be the period of u;
with respect to f. Then fPi(u;) = u; for alli > 1. The either

[wi, 2] P — covers [a, u;]

or

[wi, 2] fP* = covers [u;, ).
We may assume that for infinitely many ¢, either
[wi, 2] fP% — covers [a, u;]

or

[wi, 2] fP% — covers [u;, b].

- Then we consider two cases.

Case L [u4, z] fPi — covers [a,u;] for infinitly many 1.

There exists z; € '[u,-, z] such that fPi(z;) = y;. Since u; — z,z; —
z. Thus z € a(y1), and hence z € w(y1) Na(y1) C T(f).

Case II. [u;, 2] fPi — covers [u;,b] for infinitly many 1.

There exists z} € [u;, 2] such that fPi(z}) = ys. Since u; — 2,2} —
z. Thus z € a(y), and hence z € w(y2) N a(y2) C I'(f). The proof of

theorem is completed.
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THEOREM B. Let f € C°S*,S!). If R(f) \ R(f) is not empty,

then it is infinite.

PRrROOF. It is well known that f(R(f)) = R(f). Suppose that
R(f)\ R(f) # ¢. Let = € R(f) \ R(f). Inductively, we can choose a
sequence of points 21, z9,23, -+ € 1_2(—)-“7 such that f(z,) = - for
all n > 1, where zg = z. Note that z, € R(f) for some n > 0 implies
z = f*(z,) € R(f) and that 2, = &, for some m,n > 0, with m # n
implies « € P(f) C R(f). Hence z;,%s,23,--- € R(f) \ R(f) are
different each another. Thus R(f)\ R(f), which contains an infinitely

countable subset {z1,z2,z3, -}, is inifnite.

THEOREM C. Let f € C°(S1,S1). Then the followings are equiv-
alent
(1) R(f)\ R(f) is countable.
(2) T(f) \ R(f) is countable.

(3) (R(f), NR(f)_)\ R(f) is countable.

PROOF. (1) = (2): Obvious by Proposition.
(2) = (3): Obvious by Thoerem A.
(3) = (1):

R(f)\ R(f) = [R(F) \ (R(f) L N R(f) IV [(R(f); N R(F)_)\ R(f)]
=[(R(f) 4 \ RO U(R() -\ R(S),)]
UL(B(f)4 N R(F))\ B(f)]

is countable by the condition (3) and Lemma 1. The proof is com-
pleted.

COROLLARY. Let f € C°(S',SY). If (R(f), NR(f)_)\R(f) = ¢.

Then R(f) \ R(f) is countable.
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