RECURRENT POINTS OF THE CIRCLE MAP

*Seong Hoon Cho, Kyung Jin Min and Seung Kab Yang

Abstract

In this paper, we study the inclusion realtion between recursive sets. And we prove that if $\overline{R(f)} \backslash R(f)$ is not empty, then it is infinite, and we characterize the necessary and sufficent condition for which $\overline{R(f)} \backslash R(f)$ is countable.

1. Introduction

Let I be the unit interval, S^{1} the circle and X be a topological space. And let $C^{0}(X, X)$ denote the set of continuous maps from X into itself.

Let $f \in C^{0}(X, X)$. For any positive integer n, we define f^{n} inductively by $f^{1}=f$ and $f^{n+1}=f \circ f^{n}$. Let f^{0} denote the identity map of X.

For any $f \in C^{0}(X, X)$, let $P(f), R(f), \Lambda(f), \Gamma(f)$ and $\Omega(f)$ denote the set of periodic points, recurrent points, ω-limit points, γ-limit points and nonwandering points of f, respectively.

Let Y be a subset of $I . \bar{Y}_{+}$denotes the right-side closure, and \bar{Y}_{-} denotes the left-side closure of Y. For any $f \in C^{0}(I, I)$, J. C. Xiong [4] proved that $\left(\overline{P(f)_{+}} \cap \overline{P(f)_{-}}\right) \subset \Gamma(f)$. And also characterized [3] the necessary and sufficient condition for which $\overline{R(f)} \backslash R(f)$ is countable, and proved that if $\overline{R(f)} \backslash R(f)$ is not empty, then it is infinite.

In this paper, we obtain the following similar results for maps of the circle:

1991 Mathematics subject classifications: Primary 54A20.

Theorem A. Let $f \in C^{0}\left(S^{1}, S^{1}\right)$. Then we have

$$
\left(\overline{R(f)}_{+} \cap \overline{R(f)}_{-}\right) \subset \Gamma(f) .
$$

Theorem B. Let $f \in C^{0}\left(S^{1}, S^{1}\right)$. If $\overline{R(f)} \backslash R(f)$ is not empty, then it is infinite.

Theorem C. Let $f \in C^{0}\left(S^{1}, S^{1}\right)$. Then the followings are equivalent
(1) $\overline{R(f)} \backslash R(f)$ is countable.
(2) $\Gamma(f) \backslash R(f)$ is countable.
(3) $\left(\overline{R(f)}_{+} \cap \overline{R(f)_{-}}\right) \backslash R(f)$ is countable.

2. Preliminaries and definitions

Let (X, d) be a metric space and $f \in C^{0}(X, X)$. A point $x \in X$ is called a periodic point of f if for some positive integer $n, f^{n}(x)=x$. The period of x is the least such integer n. We denote the set of periodic points of f by $P(f)$.

A point $x \in X$ is called a recurrent point of f if there exists a sequence $\left\{n_{i}\right\}$ of positive integers with $n_{i} \rightarrow \infty$ such that $f^{n_{i}}(x) \rightarrow$ x. We denote the set of recurrent points of f by $R(f)$.

A point $x \in X$ is called a nonwandering point of f if for every neighborhood U of x, there exists a positive integer m such that $f^{m}(U) \cap U \neq \phi$. We denote the set of nonwandering points of f by $\Omega(f)$.

A point $y \in X$ is called an ω-limit point of x if there exists a sequence $\left\{n_{i}\right\}$ of positive integers with $n_{i} \rightarrow \infty$ such that $f^{n_{i}}(x) \rightarrow y$. We denote the set of ω-limit points of x by $\omega(x)$. Define $\Lambda(f)=$ $\bigcup_{x \in X} \omega(x)$.

A point $y \in X$ is called an α-limit point of x if there exist a sequence $\left\{n_{i}\right\}$ of positive integers with $n_{i} \rightarrow \infty$ and a sequence $\left\{y_{i}\right\}$
of points such that $f^{n_{i}}\left(y_{i}\right)=x$ and $y_{i} \rightarrow y$. The symbol $\alpha(x)$ denotes the set of α-limit points of x.

A point $y \in X$ is called a γ-limit point of x if $y \in \omega(x) \cap \alpha(x)$. The symbol $\gamma(x)$ denotes the set of γ-limit points of x and $\Gamma(f)=$ $\bigcup_{x \in X} \gamma(x)$.

We will use the symbols $\omega_{+}(x)$ (resp. $\left.\omega_{-}(x)\right)$ to denote the set of all points $y \in X$ such that there exists a sequence $\left\{n_{i}\right\}$ of positive integers with $n_{i} \rightarrow \infty$ such that $f^{n_{i}}(x) \rightarrow y$ and $y<\cdots<f^{n_{i}}(x)<$ $\cdots<f^{n_{2}}(x)<f^{n_{1}}(x)\left(\right.$ resp. $\quad f^{n_{1}}(x)<f^{n_{2}}(x)<\cdots<f^{n_{i}}(x)<$ $\cdots<y)$. It is clear that if $x \notin P(f)$, then $\omega(x)=\omega_{+}(x) \cup \dot{\omega}_{-}(x)$. Define $\Lambda_{+}(f)=\bigcup_{x \in X} \omega_{+}(x)$ and $\Lambda_{-}(f)=\bigcup_{x \in X} \omega_{-}(x)$.

Let Y be an arc in S^{1}, and let \bar{Y} denote the closure of Y as usual. A point $y \in X$ is called a right-sided (resp. left-sided) accumulation point of Y if for any $z \in X,(y, z) \cap Y \neq \phi($ resp. $(z, y) \cap Y \neq \phi)$.

The right-side closure \bar{Y}_{+}(resp. left-side closure $\left.\bar{Y}_{-}\right)$is the union of Y and the set of right-sided (resp. left-sided) accumulation points of Y. A point which is both a right-sided and a left-sided accumulation point of Y is called a two-sided accumulation point of Y.

The forward orbit $\operatorname{Orb}(x)$ of $x \in X$ is the set $\left\{f^{k}(x) \mid k=\right.$ $0,1,2, \cdots\}$. Usually the forward orbit of x is simply called the orbit of x.

3. Main Results

The idea of the proof of the following lemma is due to [3].
Lemma 1. Let $f \in C^{0}\left(S^{1}, S^{1}\right)$. Then the $\operatorname{set}\left(\overline{R(f)_{+}} \backslash \overline{R(f)}\right) \cup \cup$ $\left(\overline{R(f)}-\backslash \overline{R(f)}_{+}\right)$is countable.

Proof. For each $y \in\left(\overline{R(f)}_{+} \backslash \overline{R(f)}_{-}\right)$, there exists $v_{y} \in S^{1}$ such that $\left(v_{y}, y\right) \cap R(f)=\phi$. The family $\left\{\left(v_{y}, y\right) \mid y \in{\overline{R(f)_{+}}} \backslash \overline{R(f)_{-}}\right\}$ is countable because it is disjoint. Hence $\overline{R(f)_{+}} \backslash \overline{R(f)_{-}}$is count-
able. Similarly, $\overline{R(f)}_{-} \backslash \overline{R(f)_{+}}$is also countable. Therefore $\left(\overline{R(f)}_{+} \backslash\right.$ $\left.\overline{R(f)}_{-}\right) \cup\left(\overline{R(f)_{-}} \backslash{\overline{R(f)_{+}}}_{+}\right)$is countable.

The following proposition found in [2]
Prpoposition. Let $f \in C^{0}\left(S^{1}, S^{1}\right)$. Then we have

$$
P(f) \subset R(f) \subset \Gamma(f) \subset \overline{R(f)} \subset \Lambda(f) \subset \Omega(f)
$$

The following lemma found in [2]
Lemma 2. Let $f \in C^{0}\left(S^{1}, S^{1}\right)$ and $I=[a, b]$ be an arc for some $a, b \in S^{1}$ with $a \neq b$, and let $I \cap P(f)=\phi$.
(a) Suppose that there exists $x \in I$ such that $f(x) \in I$ and $x<f(x)$. Then
(1) if $y \in I, f(y) \in I, x<y$ and $f(y)<y$, then $[x, y] f$-covers $[f(x), b]$, and
(2) if $y \in I, f(y) \notin I$ and
(i) $y<x$, then $[y, x] f$-covers $[f(x), f(y)]$.
(ii) $x<y$, then $[x, y] f$-covers $[f(x), f(y)]$.
(b) Suppose that there exists $x \in I$ such that $f(x) \in I$ and $x>f(x)$. Then
(1) if $y \in I, f(y) \in I, y<x$ and $y<f(y)$, then $[x, y] f$-covers $[a, f(x)]$, and
(2) if $y \in I, f(y) \notin I$ and
(i) $y<x$, then $[y, x] f$-covers $[f(y), f(x)]$.
(ii) $x<y$, then $[x, y] f$-covers $[f(y), f(x)]$.

The following lemma found in [5]
Lemma 3. Let $f \in C^{0}\left(S^{1}, S^{1}\right)$. Then we have
(1) $\overline{R(f)}_{+} \backslash R(f) \subset \Lambda_{+}(f)$.
(2) $\overline{R(f)}-\backslash R(f) \subset \Lambda_{-}(f)$.

Theorem A. Let $f \in C^{0}\left(S^{1}, S^{1}\right)$. Then we have $(\overline{R(f)}+\cap$ $\left.\overline{R(f)_{-}}\right) \subset \Gamma(f)$.

Proof. If $P(f)=\phi$, then we have drsired result since $\overline{R(f)}=$ $\Gamma(f)$ [5]. Suppose $P(f) \neq \phi$. If $z \in R(f)$, then obviousely $z \in \Gamma(f)$. Let $z \in\left(\overline{R(f)}_{+} \cap \overline{R(f)}_{-}\right) \backslash R(f)$. Then there exists $a, b \in S^{1}$ with $a<b$ such that $z \in(a, b)$ and $(a, b) \cap \operatorname{Orb}(z)=\phi$. By Leamma 3, $z \in \Lambda_{+}(f) \cap \Lambda_{-}(f)$. Hence there exist $y_{1}, y_{2} \in S^{1}$ such that $a<$ $y_{1}<z<y_{2}<b$ with $z \in \omega\left(y_{1}\right) \cap \omega\left(y_{2}\right)$. Since $\overline{P(f)}=\overline{R(f)}, z \in$ $\left(\overline{P(f)}_{+} \cap \overline{P(f)_{-}}\right) \backslash P(f)$. There exists u_{i} of periodic point of f with $a<y_{1}<u_{1}<u_{2}<\cdots<z$ and $u_{i} \rightarrow z$. Let p_{i} be the period of u_{i} with respect to f. Then $f^{p_{i}}\left(u_{i}\right)=u_{i}$ for all $i \geq 1$. The either

$$
\left[u_{i}, z\right] f^{p_{i}}-\operatorname{covers}\left[a, u_{i}\right]
$$

or

$$
\left[u_{i}, z\right] f^{p_{i}}-\operatorname{covers}\left[u_{i}, b\right] .
$$

We may assume that for infinitely many i, either

$$
\left[u_{i}, z\right] f^{p_{i}}-\operatorname{covers}\left[a, u_{i}\right]
$$

or

$$
\left[u_{i}, z\right] f^{p_{i}}-\operatorname{covers}\left[u_{i}, b\right] .
$$

Then we consider two cases.
Case I. $\left[u_{i}, z\right] f^{p_{i}}-$ covers $\left[a, u_{i}\right]$ for infinitly many i.
There exists $z_{i} \in\left[u_{i}, z\right]$ such that $f^{p_{i}}\left(z_{i}\right)=y_{1}$. Since $u_{i} \rightarrow z, z_{i} \rightarrow$
z. Thus $z \in \alpha\left(y_{1}\right)$, and hence $z \in \omega\left(y_{1}\right) \cap \alpha\left(y_{1}\right) \subset \Gamma(f)$.
Case II. $\left[u_{i}, z\right] f^{p_{i}}$ - covers $\left[u_{i}, b\right]$ for infinitly many i.
There exists $z_{i}^{\prime} \in\left[u_{i}, z\right]$ such that $f^{p_{i}}\left(z_{i}^{\prime}\right)=y_{2}$. Since $u_{i} \rightarrow z, z_{i}^{\prime} \rightarrow$ z. Thus $z \in \alpha\left(y_{2}\right)$, and hence $z \in \omega\left(y_{2}\right) \cap \alpha\left(y_{2}\right) \subset \Gamma(f)$. The proof of theorem is completed.

Theorem B. Let $f \in C^{0}\left(S^{1}, S^{1}\right)$. If $\overline{R(f)} \backslash R(f)$ is not empty, then it is infinite.

Proof. It is well known that $f(\overline{R(f)})=\overline{R(f)}$. Suppose that $\overline{R(f)} \backslash R(f) \neq \phi$. Let $x \in \overline{R(f)} \backslash R(f)$. Inductively, we can choose a sequence of points $x_{1}, x_{2}, x_{3}, \cdots \in \overline{R(f)}$ such that $f\left(x_{n}\right)=x_{n-1}$ for all $n \geq 1$, where $x_{0}=x$. Note that $x_{n} \in R(f)$ for some $n>0$ implies $x=f^{n}\left(x_{n}\right) \in R(f)$ and that $x_{n}=x_{m}$ for some $m, n>0$, with $m \neq n$ implies $x \in P(f) \subset R(f)$. Hence $x_{1}, x_{2}, x_{3}, \cdots \in \overline{R(f)} \backslash R(f)$ are different each another. Thus $\overline{R(f)} \backslash R(f)$, which contains an infinitely countable subset $\left\{x_{1}, x_{2}, x_{3}, \cdots\right\}$, is inifnite.

Theorem C. Let $f \in C^{0}\left(S^{1}, S^{1}\right)$. Then the followings are equivalent
(1) $\overline{R(f)} \backslash R(f)$ is countable.
(2) $\Gamma(f) \backslash R(f)$ is countable.
(3) $\left(\overline{R(f)}_{+} \cap \overline{R(f)}_{-}\right) \backslash R(f)$ is countable.

Proof. (1) \Rightarrow (2): Obvious by Proposition.
$(2) \Rightarrow(3)$: Obvious by Thoerem A.
(3) $\Rightarrow(1)$:

$$
\begin{aligned}
\overline{R(f)} \backslash R(f)= & {\left[\overline { R (f) } \backslash \left(\overline{R(f)}_{+} \cap{\left.\left.\overline{R(f)_{-}}\right)\right] \cup\left[\left(\overline{R(f)_{+}} \cap \overline{R(f)_{-}}\right) \backslash R(f)\right]}_{=}\left[\left(\overline{R(f)_{+}} \backslash \overline{R(f)_{-}}\right) \cup\left(\overline{R(f)}-\backslash \overline{R(f)_{+}}\right)\right]\right.\right.} \\
& \cup\left[\left(\overline{R(f)_{+}} \cap \overline{R(f)_{-}}\right) \backslash R(f)\right]
\end{aligned}
$$

is countable by the condition (3) and Lemma 1. The proof is completed.

Corollary. Let $f \in C^{0}\left(S^{1}, S^{1}\right)$. If $\left({\overline{R(f)_{+}}}_{+} \cap \overline{R(f)}_{-}\right) \backslash R(f)=\phi$. Then $\overline{R(f)} \backslash R(f)$ is countable.

References

1. J. S. Bae and S. K. Yang, $\bar{P}=\bar{R}$ for maps of the circle, Bull. Korean. Math. Soc. 24 (1988), 151-157.
2. J. S. Bae, S. H. Cho and S. K. Yang, Relation between nonwandering points and turning points on the circle, Bull. Korean. Math. Soc. 32 (1995), 57 -66.
3. J. C. Xiong, Sets of recurrent points of continuous maps of the interval, Proc. Amer. Math. Soc. 95 (1985), 491-494.
4. \qquad , Attracting centre of a continuous self-map of the interval, Ergodic Theory \& Dynamical Systems 8 (1988), 205-213.
5. K. J. Min, Recusive properties and nonwandering points of the maps on the circle, (to appears).

Department of Mathematics
Han Seo University
Seosan, Chungnam 356-820, Korea
and
Department of Mathematics
Myong Ji University
Yongin-Eup 449-800, Korea

