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PREORDERINGS ON LOCAL GLOBAL RINGS

Kee-Young Shin

ABSTRACT. Suppose A is a local global ring (with many units) and 
T C A is a preordering. Let 阿 G A*, i = 1,2, • • - , n and a E 
(Si=i ai모) 仁1 人* • Then, for any integer Z, 1 < Z < n, there exist 
x € C己己 a«T) A A* and y € C리| 阿끄) ① A* such that a = x + y

1. Introduction
Let A be a ring, f G A[⑦ 1，… , xn]. We say that f has unit values if 

there exist «!,••• , an G A such that f(g, • • • ,(zn) E -A*. We say f has 

local unit values if for each maximal ideal m C A, / has local unit 

values as a polynomial over the local ring Am. If every polynomial 

over A with local unit values has unit values, we call A a ring with 

many units ( or a local global ring, in short LG-ring). We will show 

the Theorem 6 over the local global ring.

We need some words and notations.

Let A2 = {a2 \ a E Ay A : LG — ring} and denote by 乞스42 : the 

set of all finite sums of elements of A2. The level of A is the smallest 

natural number s such that —1 is a sum of <s-squares in A and if 

— 1 0 A2, A has finite level.

A subset T C A is called a preordering on』4 if T + T C T, T • 7 C 

T, A2 C T and —1 오 T. Note that A has finite level iff A2 is a 

preordering, if A has infinite level then 2} = 乞』42 is the smallest 

preordering on A.
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An ordering on A is a subset P C A such that P + PcP,

P, P U —P = A, and P A —P is a prime ideal of A. Denote by Xa the 

set of all orderings on A. It is easy to cheek that every ordering on A 

is also a preordering.

2. Some Propositions and Main Result
Next some propositions are well known.

PROPOSITION 1. A preordering T on A is an ordering iff it satisfies.

xy G —T => x ET or y eT

PROPOSITION 2. Let T be a preorclering on A. Then

xy € —T = one of T + xT and T + yT is a preordering.

PROOF. Note both T + xT and T + yT are closed under additon, 

multiplication and contain A2.

Suppose xy 6 —T and neither T + nor T + yT is a preordering. 

Then, —1 G T + xT and — 1 G T + j/T. Thus, there exist 呂1,'1, <§232 € 

T such that —1 = 幻 + ⑦허, and —1 = 地 + ⑦호斗 Hence, —xti = 

1 十 昌1, —yt2 = 1 + 32. By multiplying, xytit2 = 1 + 昌 for some s E T. 

But then — 1 = s — xyt\t2 G T. This is a contradiction.

PROPOSITION 3. Every maximal preordering is an ordering. Every 

preordering on A is contained in an ordering. [1], [5]

PROPOSITION 4. Let P 6 Xa- Then the set of all ordering con

taining P forms a chain under inclusion.

In particular, there is a unique maximal ordering containing P.

PROOF. Suppose Qi, Q2 € Xa such that F C Qi,P G Q2 and 

Qi 0(?2,(?2 休 Qi。Then there exist G Qi \ Q2 and y G Q2 \ Qi• 
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So, —X e Q2 and —y 6 Qi and x — y E Qi- If x — y e P C Q2, then 

x = (x — y) + y 6 Q, that is a contradiction. So x — y P and hence, 

y — x E P C Qi. Thus, y = (y — 仁) 十 ⑦ 6 Qi, a contradition too. 

Hence, one of Qi C Q2 and Q2 C Qi holds. If T is a preordering on 

A, let T* denote TA A*. Note this is a subgroup of A* of exponent 2.

PROPOSITION 5. Suppose A is a LG-ring. Let T C A be a pre

ordering and P C A a maximal ordering. Then T G P iff T* C P* •

PROOF. The implication only if part is clear. Assume T 主 P. 

Choose x E T. x P, By the maximality of P, — 1 G P 十 xP and 

hence, —(1 + ⑦) G F + xP.

Say —(1 + x) = s + xt,s,t G P. Then —1 = «s 十 x(l + t) so 

—(1 + Z) = 5(1 + Z) 十 :r(l + i)2 and hence, 1 十 :r(l + t)2 = «s' for some 

sf e p.

Let m be a maximal ideal of A. Then there exists y 6 A such that

1 + ⑦(1 + f)2 + xy2 羊 0 (mod m)

If 1 + x(l + i)2 & 0 (mod m) take y = 1. Otherwise, take y = 0. Since 

A has many units, there exits y E A such that a = l-Hr(l+/)2 +xy2 E 

A*。Clearly a E T* but a = —s1 + xy2 G —P so cz 우 P*.

The following main theorem is a special case of a transversality 

theorem in [1], but it is smart technique.

THEOREM 6. Suppose A is a local global ring and T C A is a 

preordering.

Let , an G A* and a E («iT + • • • + anT) A』4*. Then, for any 

integer Z, 1 < / < n, there exist x E («iT + • • • + a—T) A』4* and 

y E (aiT 十 • • • + anT)「1 A* such that a = ：i： 十 y.

PROOF. Let us prove it by two steps.

First we show that we can write a = x 十 y, where x G («iT 十 • • • 十 

이_i)T and y G (cz/T H---+ anT) A A*.
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Step 1. Let u G (g/T 十 • • • 十 이—T) and v G (이T + • • • + anT) 

such that a = tz -}- v. Since 2 G A*, T — T = A and hence, there exist 

3,i G T such that ai/a = s — t.

Suppose s G A*. Then a = (|)(ai + 이) = (_M + (|)(어 + 此). Let 

x = (^)ut G (mT 十 • • • 十 이—：［T) and y = ($)(이 + vt) E (이T + • • * + 

anT). Thus, it is sufficient to show that there exists G T such 

that 이/a = s' — i',s' G』4* and 이 + vt1 G A*.

Let m be a maximal ideal of A. Then there exists a,/3 € A such 

that

5 + a2 + 02 美 0 (mod m)

이 + v(t + a2 + 02) 羊 0 (mod m).

(Since 2 € A*, char(A/m) 羊 2 and hence, a2 + 02 represents at least 

3 distinct values in A/m so this is always possible) Since A has many 

units, there exist ay/3 6 A such that 5' = + a2 + 02 E -4* and if 

t1 = f+ a2+/32 then 이 + vt1 E *• Clearly, s',t' E T and 이/a = 3' —i'.

Step 2. By the above, we can write a = u + v, where u 三 (aiT + 

• • • + 이_iT) A A* and v G ((지T + • • • 十 anT) and a = ul + v', where 

uf G (di T + • • • , -Fez/—171), v1 E (이r 十 * • • 5 4-(xnT’) A A*. Let q, 月 E A. 

Then a2a = a2u + o7vJ32a = f^u1 + 02v' and hence, (a2 + /32)a = 

(a2u + f32uf) + (a2 沙 + 02v')

Suppose a2 + 02 6 A*. Let

애 = ■(쩨흐'.1 e(aiT +... + 이_1T) 
+ p-

and
(a2v 十 02v') 

a2 + 02
€ (이끄 + … + ClnT).V =

Thus, it is sufficient to show that we can choose a^/3 E A such that 

a2 + 02 € A*,a2iz + /32uf 6 A* and a2v + /32vf 6 A*. Let m be a 
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maximal ideal of A. Then there exists a, 6 A such that

a2 + /32 美 0 (mod m) 

a2/u 十 羊 0 (mod m) 

a2v + 02v' 羊 0 (mod m).

If u + u' 考 0 (mod m), v + v' 美 0 (mod m) then just choose a = 0 =

1. Ohterwise, we may assume u + tz' 三 0 (mod m). Then u = —u' 

(mod m) so we may take a = 0,/? = 1. Since A has many units, the 

result follows.

If T is preordering of A, denote by Xt the set of all maximal 

orderings of A containing T. Note that by proposition 4, if』P G 

then Xp is singleton set.

COROLLARY 7. Suppose A is a local global ring and let T C A be 

a preordering.

Then T* = n7,exTP*.

Proof. Clearly T*C「lpexT호재• Suppose a € (己PexT『서‘• Then —a 은_ 

P for all P G Xt and hence, T — aT is not a preordering as otherwise 

—a E T — aT C P for some P £ Xt.

Thus, —1 G T — aT. By the Theorem6, there exits <s,Z G T* such that

— l = s — at and hence, a = (g으〉E T, So npexTP* C T*.
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