THE NUMBER OF CONFIGURATION

ON RECTANGULAR ARRAYS

Ji Hyun Park*, Wan Soo Jung* and Dae Yeon Park**

Abstract

In this paper, we derive the formular that the number of configuration on the rectangular arrays is counted by the composite shift operator method.

1. Introduction

We study the structure of arrays integers. This problem not only has own merits but also has intimate relation to dimer problems, Ising model, Potts model and Self avoiding walks.

The purpose of the present article is to give a exact composite degeneracice of $M \times N$ lattice system by utilizing composite shift operator matrice method.

2. One Line Arrays of Two Elements

We consider simple particles (which occupy a single lattice site) distributed on a $1 \times N$ lattice. The particles are assumed to interact with their nearest neighbors only.

We first define an $\alpha_{0}(N)$-(see Fig.1) in which the site on the righthand end, i.e., the Nth site, is 0 ; and $\alpha_{1}(N)$-space to be a $1 \times N$ lattice in which the N-th site is 1 .
$f_{1}\left(N, m_{0}, m_{1}, s\right)$ is the number of sequences of arranging $m_{0} z e r o, m_{1}$ ones on an $\alpha_{i}(N)$-space in such a way as to creates changes.

1991 Mathematics subject classifications: Primary 05B30.

By inquiring about the state of occupation of the (N-1)th site (see Fig.2). We can write an exhaustive and mutually exclusive set.

$$
f_{0}\left(N, m_{0}, m_{1}, s\right)=f_{0}\left(N-1, m_{0}-1, m_{1}, s\right)
$$

$$
\begin{equation*}
+f_{1}\left(N-1, m_{0}, m_{1}, s-1\right) \tag{1}
\end{equation*}
$$

$$
f_{1}\left(N, m_{0}, m_{1}, s\right)=f_{0}\left(N-1, m_{0}, m_{1}-1, s-1\right)
$$

$$
\begin{equation*}
+f_{1}\left(N-1, m_{0}, m_{1}-1, s\right) \tag{2}
\end{equation*}
$$

Equations (1) and (2) may be represented succinctly as

$$
\left(\begin{array}{cc}
R S & R S U \tag{3}\\
R T U & T R
\end{array}\right)=\binom{f_{0}}{f_{1}}=\binom{f_{0}}{f_{1}}
$$

where R, S, T and U are operators that decrease by one, the quantities N, m_{0}, m_{1} and s respectively, i.e.,
(4)
$\left(R^{r} S^{s} T^{t} U^{u}\right) f_{i}\left(N, m_{0}, m_{1}, s\right)=f_{i}\left(N-r, m_{o}-s, m_{1}-t, s-u\right)$

Fig. 1. This figure serves to define two exhaustive and mutually exclusive one mutually exclusive one dimensional lattice space.

Fig. 2. The decomposition of f_{0} and f_{1} required to establish a recursion for $f(\mathrm{Eq} .(1),(2))$ for a $1 X N$ lattice.

We see from rewriting Eq.(3) as

$$
R\left(\begin{array}{cc}
S & T U \tag{5a}\\
S U & T
\end{array}\right)=\binom{f_{1}}{f_{2}}=\binom{f_{1}}{f_{2}}
$$

or as

$$
Q_{1} F=R^{-1} F
$$

where

$$
Q_{1}=\left(\begin{array}{cc}
S & S U \\
T U & T
\end{array}\right)
$$

or as

$$
\left(\begin{array}{cc}
S-1 / R & S U \tag{5b}\\
T U & T-1 / R
\end{array}\right)\binom{f_{1}}{f_{2}}=0
$$

that R^{-1} is an eigenvalue of the $S O M$. Thus $1 / R=\eta_{1}^{-1} \equiv \lambda_{1}$ is the largest eigenvalue of Q_{1} (expressd in the conjugate variables w, x and y) i.e.,

$$
Q=\left(\begin{array}{cc}
w & w y \tag{6}\\
x y & x
\end{array}\right)\left(\begin{array}{ll}
w & 0 \\
0 & x
\end{array}\right)=\left(\begin{array}{ll}
1 & y \\
y & 1
\end{array}\right)
$$

It is of interest and will prove of value to note that Q_{1} can be factored into a paricle matrix and a matrix that describes the nearest neighbor
pair interaction.
The Perron-Frobenius theorem ${ }^{3}$ applied to finite matrices of this type (where all the matrix elements are positive) guarantees a simple, nondegenerate, largest positive eigenvalue.

3. Extension to MXN lattices

We next construct a recursion for the composite degeneracy for a planar $2 X N$ lattice space by first defining the spaces $\alpha_{j}(N)=$ $0,1,2,3$. The required relationship among the corresponding degeneracies $f_{i}\left(N, m_{0}, m_{1}, s, r\right)$ are

$$
\begin{aligned}
f_{0}\left(N, m_{0}, m_{1}, s, r\right)= & f_{0}\left(N-1, m_{0}-2, m_{1}, s, r\right) \\
& +f_{1}\left(N-1, m_{0}-2, m_{1}, s-1,1\right) \\
& +f_{2}\left(N-1, m_{0}-2, m_{1}, s-1,1\right) \\
& +f_{3}\left(N-1, m_{0}-2, m_{1}, s-2, r\right) \\
f_{1}\left(N, m_{0}, m_{1}, s, r\right)= & f_{0}\left(N-1, m_{0}-1, m_{1}-1, s-1, r-1\right) \\
& +f_{1}\left(N-1, m_{0}-1, m_{1}-1, s, r-1\right) \\
& +f_{2}\left(N-1, m_{0}-1, m_{1}-1, s-2, r-1\right) \\
& +f_{3}\left(N-1, m_{0}-1, m_{1}-1, s-1, r-1\right) \\
f_{2}\left(N, m_{0}, m_{1}, s, r\right)= & f_{0}\left(N-1, m_{0}-1, m_{1}-1, s-1, r-1\right) \\
& +f_{1}\left(N-1, m_{0}-1, m_{1}-1, s-2, r-1\right) \\
& +f_{2}\left(N-1, m_{0}-1, m_{1}-1, s, r-1\right) \\
& +f_{3}\left(N-1, m_{0}-1, m_{1}-1, s-1, r-1\right) \\
f_{3}\left(N, m_{0}, m_{1}, s, r\right)= & f_{0}\left(N-1, m_{0}, m_{1}-2, s-2, r\right) \\
& +f_{1}\left(N-1, m_{0}, m_{1}-2, s-1, r\right) \\
& +f_{2}\left(N-1, m_{0}, m_{1}-2, s-1, r\right) \\
& +f_{3}\left(N-1, m_{0}, m_{1}-2, s, r\right)
\end{aligned}
$$

Those may written as
(9) $\quad\left(\begin{array}{cccc}w^{2} & w^{2} y & w^{2} y & w^{2} y^{2} \\ w x y z & w x z & w x y^{2} z & w x y z \\ w x y z & w x y^{2} z & w x z & w x y z \\ x^{2} y^{2} & x^{2} y & x^{2} y & x^{2}\end{array}\right)\left(\begin{array}{c}f_{0} \\ f_{1} \\ f_{2} \\ f_{3}\end{array}\right)=\eta^{-1}\left(\begin{array}{l}f_{0} \\ f_{1} \\ f_{2} \\ f_{3}\end{array}\right)$
or

$$
Q_{2} F=\eta^{-1} F
$$

From Eq.(9), we see again that $\eta^{-1}=\lambda$ is an eigenvalue of the $S O M, Q_{2}$. Again, Q_{2} may be factored

$$
\begin{align*}
& Q_{2}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & z & 0 & 0 \\
0 & 0 & z & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{cccc}
w^{2} & w^{2} y & w^{2} y & w^{2} y^{2} \\
w x y z & w x & w x y^{2} z & w x y \\
w x y & w x y^{2} & w x & w x y \\
x^{2} y^{2} & x^{2} y & x^{2} y & x^{2}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & z & 0 & 0 \\
0 & 0 & z & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{cc}
w & w y \\
x y & x
\end{array}\right) \otimes\left(\begin{array}{cc}
w & w y \\
x y & x
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & z & 0 & 0 \\
0 & 0 & z & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \times\left(\left(\begin{array}{ll}
w & 0 \\
0 & x
\end{array}\right) \otimes\left(\begin{array}{ll}
w & 0 \\
0 & x
\end{array}\right)\right) \\
& \left(\left(\begin{array}{ll}
1 & y \\
y & 1
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & y \\
y & 1
\end{array}\right)\right)=P_{2} Q_{1}^{[2]} \tag{10}
\end{align*}
$$

where [2] denotes the Kronecker product ${ }^{1}$ of Q_{1} with itself and

$$
P_{2} \equiv\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{11}\\
0 & z & 0 & 0 \\
0 & 0 & z & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$Q_{1}^{[2]}$ in Eq.(10) can be interpreted as representing the nearest neighbor degeneracies of two independent $1 X N$ lattices and P_{2} describes the nearest neighor interaction between the two $1 X N$ strips of which the $2 X N$ space is composed.

We continue for a $3 X N$ lattice by writing a $1 X N$ space united with a $2 X N$ space.

								0
								0

								0
								1

								1

Fig. 3. The figure serves to define four exhaustive and mutually $2 \times N$ lattice space.

$$
\begin{aligned}
& Q_{3}=\left(\begin{array}{llllllll}
1 & & & & & & & \\
& 1 & & & & & & \\
& & z & & & & & \\
& & & z & & & & \\
& & & & z & & & \\
& & & & & z & & \\
& & & & & & & \\
& & & & & & 1 & \\
& & & & & & 1
\end{array}\right) Q_{1} \otimes Q_{2} \\
& =\left(P_{2} \otimes I\right)\left(Q_{1} \otimes P_{2} Q_{1}^{[2]}\right) \\
& =\left(P_{2} \otimes I\right)\left(I Q_{1} \otimes P_{2} Q_{1}^{[2]}\right)
\end{aligned}
$$

or

$$
\begin{align*}
Q_{3} & =\left(P_{2} \otimes I\right)\left(I \otimes P_{2}\right) Q_{1}^{[3]} \\
& =P_{3} Q_{1}^{[3]} \tag{12}
\end{align*}
$$

where I is the 2×2 identity matrix, where(because the matrices are commensurate) we have ussd ${ }^{2}$ for any non-singular matrix G_{j}

$$
\begin{equation*}
\left(G_{1} \otimes G_{2}\right)\left(G_{3} \otimes G_{4}\right)=\left(G_{1} G_{3}\right) \otimes\left(G_{2} G_{4}\right) \tag{13}
\end{equation*}
$$

and where the diagonal matrix P_{3} is given by

$$
\begin{equation*}
P_{3} \equiv\left(P_{2} \otimes I\right)\left(I \otimes P_{2}\right) \tag{14}
\end{equation*}
$$

Thus, Q_{3} can be considered to be the result either of joining a $1 \times N$ lattice (represented by Q_{1}) with a $2 X N$ lattice (represented by Q_{2}) or of joining three $1 X N$ lattice(see Eq.(12)). To make the generalization manifest, we consider a $4 X N$ lattice;

$$
\begin{align*}
Q_{4} & =\left(P_{2} \otimes I^{[2]}\right) Q_{1} \otimes Q_{3} \\
& =\left(P_{2} \otimes I^{[2]}\right) Q_{1} \otimes\left[\left(P_{2} \otimes I\right)\left(I \otimes P_{2}^{[3]}\right)\right] \\
& =\left[P_{2} \otimes I^{[2]}\right]\left\{I \otimes\left[\left(P_{2} \otimes I\right)\left(I \otimes P_{2}\right)\right] Q_{1}^{[4]}\right\} \tag{15}
\end{align*}
$$

where we have used Eq.(13) ; finally

$$
\begin{align*}
Q_{4} & =\left[P_{2} \otimes I \otimes I\right]\left[I \otimes P_{2} \otimes I\right]\left[I \otimes I \otimes P_{2}\right] Q_{1}^{[4]} \\
& =P_{4} Q_{1}^{[4]} \tag{16}
\end{align*}
$$

where the diagonal matrix

$$
\begin{equation*}
P_{4} \equiv\left[P_{2} \otimes I \otimes I\right]\left[I \otimes P_{2} \otimes I\right]\left[I \otimes I \otimes P_{2}\right] \tag{17}
\end{equation*}
$$

(note the similatrity with Eq.(14).)
The various factors in P_{4} can be best interpreted by means of Fig.
5. In this figure, the sixteen possible N-th columns of a $4 X N$ lattice are shown; next to each partition is the conjugate variable associated with change or not.

The sequence of columns has been chosen to be consistent with the decomposition enumerated in Fig. 2 and 3.

The factor, $I \otimes I \otimes P_{2}$ multiplying $Q_{1}^{[4]}$ is a diagonal matrix whoose elements describe the interaction between the top and the next-to-the-top $1 X N$ lattice strips of which the $4 X N$ lattice is composed.

The diagonal elements of this matrix are given in the order (from left to right) of operators shown between the top and the next-to-the-top sites of the sixteen columns shown in the figure, i.e. $1, z, z, 1,1, z, z, 1,1$, $z, z, 1,1, z, z, 1$.

Similarly, $I \otimes P_{2} \otimes I$ describes the interaction between the middle two rows. The diagonal of this matrix are given in the order(from left to right) of the operators shown between the middle two sites of the sixteen N -th columns shown in the figure, i.e. $1,1, z, z, z, z, 1,1,1,1, z, z$, $z, z, z, 1,1$.

By analogy, it is seen that $P_{2} \otimes I \otimes I$ is diagonal matrix whose non-zero elements are $1,1,1,1, z, z, z, z, z, z, z, z, 1,1,1,1$.

Fig. 5. The figure shows all 16 of the possible occupational arrangements for the N-th column a $4 X N$ lattice. Besides each separation in a column i.e., besides each neighbor pair, is the activity associated
with it. The product of all three activities in our arrangement yields the associated element in the diagonal matrix. $P_{M_{p}}$ (see Eqs.(17) and (18))

Thus, by considering a figure such as Fig.5, one can easily obtain the (diagonal) elements of P_{4} by inspection, without carring out the indicated matrix multiplications. The (k, k)-th element of P_{4} can be obtained by forming the product of 1 and z in the N -th column.

Thus for example, the diagonal elements of P_{4} are $1, z, z^{2}, z, z^{2}, z^{3}$, $z^{2}, z, z, z^{2}, z^{3}, z^{2}, z, z^{2}, z, 1$. Utilizing Eqs. (12) and (16), we may generalize the foregoing results to be

$$
\begin{equation*}
P_{M P}=\prod_{K=1}^{M-1} \prod_{\substack{\otimes \\ J=1}}^{M-1} \gamma_{j k} \tag{18}
\end{equation*}
$$

where Π denotes ordinary matrix multiplication, where Π_{\otimes} implies the Kronecker product and

$$
\gamma_{j k}=\left\{\begin{array}{cc}
P_{2} & j=k \tag{19}\\
I & j \neq k
\end{array}\right.
$$

Thus, for a planar $M X N$ lattice

$$
\begin{equation*}
Q_{M P}=P_{M P} Q_{1}^{[M]} \tag{20}
\end{equation*}
$$

In Eq.(20), $Q_{1}^{[M]}$ is the matrix describing the occupational and composite nearest neighbor degeneracise of M non-interacting $1 \times N$ lattice spaces. $P_{M P}$ describes the nearest neighboring $1 \times N$ strips with neighboring $1 \times N$ strips.

References

1. A. Grham, Kronecker Products and Matrix Calcus with Applications, Ellis Homewood, Lonon, 1981.
2. P. R. Halmos, Finite Dimensional Vector Space, Van Nostrand, Princeton, 1985.
3. M. Marcus and H. Ming, A survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston, 1964.
4. R. B. McQuestan and J. L. Hock, J. Math. Phys. 81 (1989).
5. J. H. Park, Studies on Rectangular Arrays(Thesis).
6. J. H. Song and J. H. Park, 서울시립대학 논문집 20 (1985), 365.

Department of Mathematics
Soonchunhyang University
Asan 337-745, Korea
AND
*
Department of mathematics Education
Jeon-Ju University
Jeon-Ju 560-759, Korea

