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THE NUMBER OF CONFIGURATION

ON RECTANGULAR ARRAYS

Ji Hyun Park*, Wan Soo Jung* and Dae Yeon Park**

ABSTRACT. In this paper, we derive the formular that the number of 
configuration on the rectangular arrays is counted by the composite 
shift operator method.

1. Introduction
We study the structure of arrays integers. This problem not only 

has own merits but also has intimate relation to dimer problems, Ising 

model, Potts model and Self avoiding walks.

The purpose of the present article is to give a exact composite 

degeneracice of M x TV lattice system by utilizing composite shift 

operator matrice method.

2. One Line Arrays of Two Elements
We consider simple particles (which occupy a single lattice site) 

distributed on a 1 x TV lattice. The particles are assumed to interact 

with their nearest neighbors only.

We first define an a()(N) -(see Fig.l) in which the site on the right­

hand end, i.e., the Nth site, is 0 ; and m丄N) -space to be a 1 x TV 

lattice in which the N-th site is 1.

/i (7V, m(), mi, s) is the number of sequences of arranging m^zero^ mi 

ones on an ai(7V)-space in such a way as to creates changes.
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By inquiring about the state of occupation of the (N-l)th site (see 

Fig.2). We can write an exhaustive and mutually ex시usive set.

/o( 시', m0,mi,3)=fo(N — l,m0 — l,mi,3)

(1) +/1QV — l,m(),mi,5 — 1)

/i(7V,m0,mi,3)=fQ(N — l,m(),mi — 1,3 — 1)

(2) +/i(川 一 l,mo,mi — 1,3)

Equations (1) and (2) may be represented succinctly as

(3) (RS KW) = f'0) = p)

\RTU TR ) \fj

where R,S,T and U are operators that decrease by one, the quantities 

m(),mi and s respectively, i.e.,

(4)

(RrS8TtUu (AT, m0, mi, 5)= fi(N — r,m0 — 5,mi — t,s — u)

「으—T으1 1 EZZZIZZZZTZXIJ
<----------------------- N ---------------------- >

Fig. 1. This figure serves to define two exhaustive and mutually 

exclusive one mutually exclusive one dimensional lattice space.
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Fig. 2. The decomposition of /o and j\ required to establish a 

recursion for /(Eq. (1),(2)) for a 1XN lattice.

We see from rewriting Eq.(3) as

(5a)
(—C:)

or as

where

or as

(5b)

—a 7)

(S —니 R su WAV 

\ TU T — 1/R)\j2) —

that JR-1 is an eigenvalue of the SOM. Thus 1/R = r/己 = Ai is the 

largest eigenvalue of Qi (expressd in the conjugate variables w, x and 

V)i-e.,

(6)

It is of interest and will prove of value to note that Qi can be factored 

into a paricle matrix and a matrix that describes the nearest neighbor 
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pair interaction.

The Perron-Frobenius theorem3 applied to finite matrices of this 

type (where all the matrix elements are positive) guarantees a simple, 

nondegenerate, largest positive eigenvalue.

3. Extension to MXN lattices
We next construct a recursion for the composite degeneracy for 

a planar 2XN lattice space by first defining the spaces oij(N) = 

0,1,2,3. The required relationship among the corresponding degen­

eracies fi(N, mo, 7721 , «s, r) are

/0(八『,772(),끼1,昌,r) = jfo(A『 一 l,m()— 2,mi,3,r)

+ fi(N — l,m()— 2, mi, 昌一 1,1)

+ — l,m()— 2, mi, <s — 1,1)

+ h(N — l,m()— 2,mi,昌 一 2,r)

/i(川, mo,mn昌,r) = fo(N - l,m0 - l,mi - 1,3 - l,r _ 1)

+ — l,m0 — l,mi - l,5,r _ 1)

+ f2(N - l,m0 - l,mi - l,«s _ 2,r _ 1)

+ f3(N — l,m0 — l,mi _ 1,3 _ l,r - 1)

f2(N, = fQ(N — l,m0 — 1, mi — 1, 昌 一 1, r — 1)

+/i(川 一 l,mo - l,mi - 1,5 _ 2,r - 1)

+ /2(川 一 l,m()_ l,mi - l,<s,r - 1)

+ — l,m0 - l,mi _ 1,3 - l,r - 1)

f3(N,mQ,m1,s,r) = fQ(N — l,m(),mi — 2,3 — 2,r)

+ fi(N — l,mo,mi — 2,昌 一 l,r)

+ f2(N — l,m(),mi _ 2,昌 一• l,r)

(7) + h(N — 1, mo, mi — 2,<s,r)
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Those may written as

f w2 w2y 9 w£y w2y2 \ //o\ /fo\

(9)
wxyz

wxyz

wxz 

wxy^z

wxy2z

wxz

wxyz

wxyz

fi 

h
= 厂

fl 

h

k ⑦2y2 x2y 9 
y x2 ) )

or

q2f = t1-1f

From Eq.(9), we see again that t/”1 = A is an eigenvalue of the

SOM, Q2- Again, Q2 may be factored 

(10)

Q2 =

<1 0 0 0\

0 z 0 0

0 0 z 0

ko 0 0 1/

<1 0 0 o\

0 z 0 0

0 0 z 0
〈0

0 0 1/

(1 0 0 0\

0 z 0 0

0 0 z 0
〈0

0 0
1〉

( w2 w2y 9 w£y w2y2 }

wxyz wx wxy 么 z wxy
X

wxy wxy2 wx wxy

\ x2y2 9 
아 y

9 
해 y x2 )

where [2] denotes the Kronecker product1 of Qi with itself and

/I 0 0 0\

0 之 0 0
(11) A =

0 0 之 0
(0001』
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Qi in Eq.(10) can be interpreted as representing the nearest neighbor 

degeneracies of two independent 1XN lattices and P2 describes the 

nearest neighor interaction between the two 1XN strips of which the 

2XN space is composed.

We continue for a 3XN lattice by writing a 1XN space united with 

a 2XN space.

Fig. 3. The figure serves to define four exhaustive and mutually 

2 x N lattice space.

Qi ® Q2

= (乃=丁)((21=。이7이)

= (P2®/)(ZQ1®P2q'21)= (P2®/)(ZQ1®P2q'21)
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or

(?3 =(P2®I)(丁 ® 乃2)少31

(12) =P3이31

where I is the 2x2 identity matrix, where(because the matrices are 

commensurate) we have ussd2 for any non-singular matrix Gj

(13) ((구 1 ® 시2)«고3 ®(우4)=(시 1(?3)® ((구＜4)

and where the diagonal matrix P흐 is given by

(14) P3 = (P2®I)(I0P2)

Thus, Qs can be considered to be the result either of joining a IXN 

lattice (represented by Qi) with a 2XN lattice (represented by Q^) or 

of joining three 1XN lattice(see Eq.(12)). To make the generalization 

manifest, we consider a 4XN lattice;

Qa = (乃2 ® Z⑵ )Q1 ®(?3

= (P2 ® 才이 )Qi ® [(P2 ® /)(! ® Pp])]

(15) = [P2 ® /[의]{Z ® [(P2 ® 1)(1 ® F2)]Q|4]}

where we have used Eq.(13) ; finally

Q4 = [P2®I®I][I®P2®I][I®I® P2]Q^]

(16) = AQ 비

where the diagonal matrix

(17) P4 三 [P2®Z®Z][/®P2
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(note the similatrity with Eq.(14).)

The various factors in P4 can be best interpreted by means of Fig.

5. In this figure, the sixteen possible N-th columns of a 4XN lattice 

are shown; next to each partition is the conjugate variable associated 

with change or not.

The sequence of columns has been chosen to be consistent with the 

decomposition enumerated in Fig. 2 and 3.

The factor, I ® I ® P2 multiplying is a diagonal matrix whoose 

elements describe the interaction between the top and the next-to- 

the-top 1XN lattice strips of which the 4XN lattice is composed.

The diagonal elements of this matrix are given in the order(from left 

to right) of operators shown between the top and the next-to-the-top 

sites of the sixteen columns shown in the figure, i.e.l,2：,2r,l,l, 之，之,1,1, 

之，之, 1, 1, 2三之, 1 •

Similarly, I ® P2 ® I describes the interaction between the middle 

two rows. The diagonal of this matrix are given in the order(from left 

to right) of the operators shown between the middle two sites of the 

sixteen N-th columns shown in the figure, i.e.l, 1, 之, z、之, z, 1,1,1,1,2人 z、 

之，之,2：,1,1.

By analogy, it is seen that 2% (g) I ® / is diagonal matrix whose 

non-zero elements are 1,1,1,1, 之, 之, 之, z, 之, 之, 之, 之, 1,1,1,1.

1

Fig. 5. The figure shows all 16 of the possible occupational arrange­

ments for the N-th column a 4：XN lattice. Besides each separation 

in a column i.e., besides each neighbor pair, is the activity associated
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with it. The product of all three activities in our arrangement yields 

the associated element in the diagonal matrix. Pg (see Eqs.(17) and

(18))  ' ' '

Thus, by considering a figure such as Fig.5, one can easily obtain 

the (diagonal) elements of P4 by inspection, without carring out the 

indicated matrix multiplications. The (A:, fc)-th element of J4 can be 

obtained by forming the product of 1 and z in the N-th column.

Thus for example, the diagonal elements of P4 are 1, 之, 之三 之，之2, 之3, 

分、z、之, 之2, 之3, 之2, 之, 之2, 之, 1. Utilizing Eqs. (12) and (1.6), we may gen- 

ei’alize the foregoing results to be

Af—1 M—l
(18) pMP = n n7北

K=1 ®
J==l

where ]T[ denotes ordinary matrix multiplication, where [드多 implies 

the Kronecker product and

( P2 j = k
(19) Ijk = {

I I j^k

Thus, for a planar MXN lattice

(20) Qmp = PmpQ^

In Eq.(20), 少⑶ is the matrix describing the occupational and 

composite nearest neighbor degeneracise of M non-interacting 1 x TV 

lattice spaces. Pmp describes the nearest neighboring 1 x N strips 

with neighboring 1 x N strips.

References

1. A. Grham, Kronecker Products and Matrix Calcus with Applications, Ellis 
Homewood, Lonon, 1981.



104 JI HYUN PARK*, WAN SOO JUNG* AND DAE YEON PARK**

2. P. R. Halmos, Finite Dimensional Vector Space, Van Nostrand, Princeton, 
1985.

3. M. Marcus and H. Ming, A survey of Matrix Theory and Matrix Inequali­
ties^ Allyn and Bacon, Boston, 1964.

4. R. B. McQuestan and J. L. Hock, J. Math. Phys. 81 (1989).
5. J. H. Park, Studies on Rectangular Arrays (Thesis),
6. J. H. Song and J. H. Park, 서울시 립대하 논문집 20 (1985), 365.

Department of Mathematics 
SOONCHUNHYANG UNIVERSITY 

Asan 337-745, Korea 
AND 
♦ ♦

Department of mathematics Education 
Jeon-Ju University

Jeon-Ju 560-759, Korea




