ON THE INTEGRAL AND INTEGRO-DIFFERENTIAL INEQUALITIES

Se-Mok Song

Abstract

We complete the proofs of integral and integro-differential inequalities presented in Lakshmikantham, Leela and Raos' results.

1. Introduction

There are various types of differential inequalities, e.g., Gronwall type, Wendroff type, Bihari type inequalities. Theory of differential inequalities plays a prominent role in the study of qualitative and quantitative behavior of nonlinear differential systems.

In this paper we complete the proofs of integral and integrodifferential inequalities appeared without proof in [3]. Our main reference is [2].

2. Main Results

First, the following scalar comparison result contains the central idea of the theory of inequalities.

Theorem 1 [2, Theorem 1.5.2]. Consider the saclar differential equation

$$
\begin{cases}u^{\prime} & =g(t, u) \tag{1}\\ u\left(t_{0}\right) & =u_{0}\end{cases}
$$

Received by the editors on June 30, 1995.
1991 Mathematics subject classifications: Primary 34A40.
where $g \in C\left(\mathbb{R}^{+} \times \mathbb{R}^{+}, \mathbb{R}\right)$. Let $r(t)$ be the maximal solution of (1) existing on $\left[t_{0}, \infty\right)$. Suppose that $m \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$and

$$
D m(t) \leq g(t, m(t)), \quad t \geq t_{0}
$$

where D is any fixed Dini derivative. Then $m\left(t_{0}\right) \leq u_{0}$ implies

$$
m(t) \leq r(t), \quad t \geq t_{0}
$$

Theorem 2 [2, Theorem 1.8.3]. Let $m \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right), f \in C\left(\mathbb{R}^{+} \times\right.$ $\left.\mathbb{R}^{+}, \mathbb{R}\right)$ and $H \in C\left(\mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{+}, \mathbb{R}\right)$. Suppose that $g_{0} \in C\left(\mathbb{R}^{+} \times\right.$ $\left.\mathbb{R}^{+}, \mathbb{R}\right)$ satisfies $g_{0} \leq F$, where

$$
F\left(t, u ; t_{0}\right)=f(t, u)+\int_{t_{0}}^{t} K(t, s, u) d s
$$

and

$$
K(t, s, u)=H(t, s, \eta(s, t, u))
$$

where $\eta\left(s, T, v_{0}\right)$ is the left maximal solution of

$$
\begin{cases}u^{\prime} & =g_{0}(t, u) \tag{2}\\ u(T) & =v_{0}\end{cases}
$$

existing on $\left[t_{0}, T\right]$. Let the following hold:

$$
D^{+} m(t) \leq f(t, m(t))+\int_{t_{0}}^{t} H(t, s, m(s)) d s, \quad t \geq t_{0}
$$

Then $m\left(t_{0}\right) \leq u_{0}$ implies

$$
m(t) \leq r(t), \quad t \geq t_{0}
$$

where $r(t)$ is the maximal solution of

$$
\begin{cases}u^{\prime} & =F\left(t, u, t_{0}\right) \tag{3}\\ u\left(t_{0}\right) & =u_{0}\end{cases}
$$

existing on $\left[t_{0}, \infty\right)$.
Now, we obtain some results using the above fundamental results.

Theorem 3. Assume that $f=g_{0}=-c(u)$ and $H \geq 0$, where $c(u)$ is a continuous, nondecreasing function in u and $c(0)=0$. Then

$$
m(t) \leq r(t) \quad t \geq t_{0}
$$

where $r(t)$ is the maximal solution of

$$
\left\{\begin{array}{l}
\left.u^{\prime}(t)=f(t, u(t))+\int_{t_{0}}^{t} H\left(t, s, J^{-1}[J\{u(t)-(t-s)\})\right]\right) d s \\
u\left(t_{0}\right)=u_{0}
\end{array}\right.
$$

existing on $\left[t_{0}, \infty\right)$, whenever $m\left(t_{0}\right) \leq u_{0}$. Here

$$
J(u)=\int_{u_{0}}^{u} \frac{1}{c(s)} d s \text { and } J^{-1} \text { is the inverse of } J .
$$

Proof. Notice that $c(u)>0$ for $u>0, J^{\prime}(u)=\frac{1}{c(u)}>0$ for $u>0$ and

$$
J(u)-J\left(u_{0}\right)=\int_{u_{0}}^{u} \frac{1}{c(s)} d s
$$

is strictly nondecreasing. Thus J^{-1} exists and it is strictly nondecreasing. It is sufficient to show that

$$
\eta\left(t, T, v_{0}\right)=J^{-1}[J(u(T))-(t-T)]
$$

is the maximal solution of

$$
\begin{cases}u^{\prime} & =-c(u) \tag{4}\\ u(T) & =v_{0} \geq 0\end{cases}
$$

First, we must find the right maximal solution of

$$
\begin{cases}u^{\prime} & =c(u) \tag{5}\\ u\left(t_{0}\right) & =u_{0} .\end{cases}
$$

Note that

$$
\begin{aligned}
J(u)-J\left(u_{0}\right) & =\int_{t_{0}}^{t} \frac{u^{\prime}}{c(u)} d s=\int_{t_{0}}^{t} d s \\
& =\int_{u_{0}}^{u} \frac{1}{c(r)} d r=t-t_{0}
\end{aligned}
$$

Since $J(u)$ is strictly nondecreasing in u, we have

$$
u(t)=J^{-1}\left[J\left(u_{0}\right)+t-t_{0}\right], \quad t \geq t_{0} .
$$

Thus $v\left(t, t_{0}, u_{0}\right)=u(t)$ is the right maximal solution of (5).
Next, we find the left maximal solution of

$$
\begin{cases}u^{\prime} & =g_{0}(t, u)=-c(u) \tag{2}\\ u(t) & =v_{0} \geq 0\end{cases}
$$

Note that $J(u)=J(u(T))-(t-T)$ since $J(u)-J\left(u_{0}\right)=\int_{T}^{t} d s=T-t$. Since $J(u)$ is strictly nondecreasing in u, we have

$$
u(t)=J^{-1}\left[J(u(T)-(t-T)], \quad t_{0} \leq t \leq T .\right.
$$

Therefore $\eta\left(t, T, v_{0}\right)=J^{-1}[J(u(T)-(t-T)]$ is the right maximal solution of (2)'.

Theorem 4. Consider the special case $f=g_{0}=-\alpha u, \alpha>0$ and $H(t, s, u)=H(t, s) u$ with $H(t, s) \geq 0$. Then

$$
m(t) \leq m\left(t_{0}\right) \exp \left[\int_{t_{0}}^{t} B\left(s, t_{0}\right) d s\right], \quad t \geq t_{0}
$$

where $B\left(t, t_{0}\right)=-\alpha+\int_{t_{0}}^{t} H(t, s) e^{\alpha(t-s)} d s$.
Proof. Note that the right maximal solution of
(6)

$$
\begin{cases}u^{\prime} & =\alpha u \\ u\left(t_{0}\right) & =u_{0}\end{cases}
$$

is $u(t)=u_{0} e^{\alpha\left(t-t_{0}\right)}, t \geq t_{0}$. Moreover,

$$
\eta\left(t, T, v_{0}\right)=v_{0} e^{\alpha\left(T-t_{0}\right)}=u(T) e^{\alpha(T-t)}
$$

is a left maximal solution of

$$
\begin{cases}u^{\prime} & =-\alpha u \tag{7}\\ u(T) & =v_{0} \geq 0\end{cases}
$$

existing for $t_{0} \leq t \leq T$. Thus we have

$$
\begin{aligned}
u^{\prime} & =F\left(t, u ; t_{0}\right)=f(t, u)+\int_{t_{0}}^{t} K(t, s, u) d s \\
& =-\alpha u+\int_{t_{0}}^{t} H(t, s, \eta(s, t, u)) d s \\
& =-\alpha u+\int_{t_{0}}^{t} H(t, s) e^{\alpha(t-s)} u(t) d s, \quad t_{0} \leq s \leq t \\
& =B\left(t, t_{0}\right) u
\end{aligned}
$$

where

$$
B\left(t, t_{0}\right)=-\alpha+\int_{t_{0}}^{t} H(t, s) e^{\alpha(t-s)} d s
$$

Hence

$$
u(t)=r(t)=u_{0} \exp \left[\int_{t_{0}}^{t} B\left(s, t_{0}\right) d s\right], \quad t \geq t_{0}
$$

Consequently, we have

$$
m(t) \leq m\left(t_{0}\right) \exp \left[\int_{t_{0}}^{t} B\left(s, t_{0}\right) d s\right], \quad t \geq t_{0}
$$

provided that $m\left(t_{0}\right)=u_{0}$.

Theorem 5 [2, Theorem 1.8.1]. Let $f \in C\left(\mathbb{R}^{+} \times \mathbb{R}^{+}, \mathbb{R}\right), H \in$ $C\left(\mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{+}, \mathbb{R}\right), H(t, s, u)$ be nondecreasing in u for each (t, s) and for $t \geq t_{0}$,

$$
\begin{equation*}
D^{+} m(t) \leq f(t, m(t))+\int_{t_{0}}^{t} H(t, s, m(s)) d s \tag{8}
\end{equation*}
$$

where $m \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$. Suppose that $r(t)$ is the maximal solution of

$$
\left\{\begin{array}{l}
u^{\prime}(t)=f(t, u(t))+\int_{t_{0}}^{t} H(t, s, u(s)) d s \tag{9}\\
v\left(t_{0}\right)=u_{0} \geq 0
\end{array}\right.
$$

existing on $\left[t_{0}, \infty\right)$. Then $m\left(t_{0}\right) \leq u_{0}$ implies $m(t) \leq r(t), t \geq t_{0}$.
For the proof of the existence of the maximal solution for (9), see [4].

Corollary 6. Assume that (8) hold with

$$
f=a(t) u, \quad H=H(t, s) u .
$$

Then $m(t) \leq R\left(t, t_{0}\right) u\left(t_{0}\right), t \geq t_{0}$, where $R(t, s)$ is the solution of

$$
\frac{\partial R(t, s)}{\partial s}+R(t, s) a(s)+\int_{s}^{t} R(t, \sigma) H(\sigma, s) d \sigma=0, R(t, t)=I
$$

on the interval $t_{0} \leq s \leq t$.
Proof. It is enough to show that $r(t)=R\left(t, t_{0}\right) u\left(t_{0}\right)$ is the solution of (9). Let $u(t)$ be any solution of (9). We prove that $u(t)=$ $R\left(t, t_{0}\right) u\left(t_{0}\right)$. Put $v(s)=R(t, s) u(s)$ for $t_{0} \leq s \leq t$. Then we obtain

$$
\begin{aligned}
v^{\prime}(s) & =\frac{\partial R(t, s)}{\partial s} u(s)+R(t, s) u^{\prime}(s) \\
& =\frac{\partial R(t, s)}{\partial s} u(s)+R(t, s)\left[a(s) u(s)+\int_{t_{0}}^{t} H(s, \sigma) u(\sigma) d \sigma\right] \\
& =\left[\frac{\partial R(t, s)}{\partial s}+R(t, s) a(s)\right] u(s)+R(t, s) \int_{t_{0}}^{s} H(s, \sigma) u(\sigma) d \sigma .
\end{aligned}
$$

By integrating from t_{0} to t, we obtain

$$
\begin{aligned}
& R(t, t) u(t)-R\left(t, t_{0}\right) u\left(t_{0}\right) \\
= & \int_{t_{0}}^{t}\left[\frac{\partial R(t, s)}{\partial s}+R(t, s) a(s)\right] u(s) d s \\
& +\int_{t_{0}}^{t} R(t, s)\left[\int_{t_{0}}^{t} H(s, \sigma) u(\sigma) d \sigma\right] d s, \quad t_{0} \leq s \leq t \\
= & \int_{t_{0}}^{t}\left[\frac{\partial R(t, s)}{\partial s}+R(t, s) a(s)+\int_{s}^{t} R(t, \sigma) H(\sigma, s) d \sigma\right] u(s) d s \\
= & \int_{t_{0}}^{t} 0 \cdot u(s) d s=0
\end{aligned}
$$

Thus $R(t, t) u(t)=R\left(t, t_{0}\right) u\left(t_{0}\right), t \geq t_{0}$. Therefore $u(t)=R\left(t, t_{0}\right) u\left(t_{0}\right)$.

We consider the integral equation of Volterra type given by

$$
\begin{equation*}
u(t)=h(t)+\int_{t_{0}}^{t} K(t, s, u(s)) d s \tag{10}
\end{equation*}
$$

where $h \in C\left(\mathbb{R}^{+}, \mathbb{R}\right)$ and $K \in C\left(\mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{+}, \mathbb{R}\right)$.
The following is the comparison result relative to the equation (10).
Theorem 7 [2, Theorem 1.6.3]. Suppose that

$$
m(t) \leq h(t)+\int_{t_{0}}^{t} K(t, s, m(s)) d s, \quad t \geq t_{0}
$$

where $m \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$and $K(t, s, u)$ is nondecreasing in u for each (t, s). Assume that $r(t)$ is the maximal solution of (10) existing on $\left[t_{0}, \infty\right)$. Then $m(t) \leq r(t), t \geq t_{0}$.

Corollary 8. If, in Theorem $7, K(t, s, u)=K(t, s) u$, then $m(t) \leq$ $r(t), t \geq t_{0}$, where $r(t)$ is the solution of (10) satisfying

$$
r(t)=h(t)-\int_{t_{0}}^{t} R(t, s) h(s) d s
$$

$R(t, s)$ being the resolvent kernel given by

$$
R(t, s)=-k(t, s)+\int_{s}^{t} R(t, \sigma) K(\sigma, s) d \sigma
$$

Proof. We prove that for any solution $r(t)$ of (10).

$$
r(t)=h(t)-\int_{t_{0}}^{t} R(t, s) h(s) d s, \quad t \geq t_{0}
$$

Note that

$$
R(t, s) r(s)=\left[h(s)+\int_{t_{0}}^{s} K(s, \tau) r(\tau) d \tau\right] R(t, s), \quad t_{0} \leq s \leq t
$$

Integrating from t_{0} to t, we obtain

$$
\begin{aligned}
\int_{t_{0}}^{t} R(t, s) r(s) d s-\int_{t_{0}}^{t} R(t, s) h(s) d s & =\int_{t_{0}}^{t} R(t, s)\left[\int_{t_{0}}^{s} K(s, \tau) r(\tau) d \tau\right] d s \\
& =\int_{t_{0}}^{t}\left[\int_{\tau}^{t} R(t, \sigma) K(\sigma, \tau) d \sigma\right] r(\tau) d \tau \\
& =\int_{t_{0}}^{t}[R(t, \tau)+K(t, \tau)] r(\tau) d \tau
\end{aligned}
$$

Thus we have

$$
-\int_{t_{0}}^{t} R(t, s) h(s) d s=\int_{t_{0}}^{t} K(t, \tau) r(\tau) d \tau
$$

This implies that

$$
r(t)=h(t)-\int_{t_{0}}^{t} R(t, s) h(s) d s, \quad t \geq t_{0}
$$

Finally, we can prove the following [2, Theorem 1.3.3] as a corollary of Theorem 7 .

Corollary 9. Suppose that

$$
m(t) \leq h(t)+\int_{t_{0}}^{t} K(t, s) g(m(s)) d s, \quad t \geq t_{0}
$$

where $m, h \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right), g \in C((0, \infty),(0, \infty)), g(u)$ is nondecreasing in $u, K \in C\left(\mathbb{R}^{+} \times \mathbb{R}^{+}, \mathbb{R}^{+}\right), K_{t}(t, s)$ exists and it continuous nonnegative. Assume that g is subadditive. Then

$$
m(t) \leq h(t)+G^{-1}\left[G(c)+\int_{t_{0}}^{t} v_{1}(s) d s\right], \quad t_{0} \leq t \leq T_{0}<T,
$$

where $G(u)-G\left(u_{0}\right)=\int_{u_{0}}^{u} \frac{1}{g(s)} d s, G^{-1}(u)$ is the inverse of $G(u)$,
$T=\sup \left\{t \geq t_{0}: G(u)+\int_{t_{0}}^{t} v(s) d s \in \operatorname{dom} G^{-1}\right\}, \quad c=\int_{t_{0}}^{T_{0}} v_{2}(s) d s$,
$v_{1}(t)=K(t, t)+\int_{t_{0}}^{t} K_{t}(t, s) d s, v_{2}(t)=K(t, t) g(h(t))+\int_{t_{0}}^{t} K_{t}(t, s) g(h(s)) d s$.

References

1. T.A. Burton, Volterra Integral and Differential Equations, Academic press, 1983.
2. V. Lakshimikantham, S. Leela and A.A. Martynyuk, Stability Analysis of Nonlinear Systems, vol. 43, Marcel Dekker, Inc., 1989.
3. V. Lakshimikantham, S. Leela and M. Rama Mohana Rao, Integral and integro-differential inequalities, Appl. Anal. 24 (1987), 157-164.
4. W. Zhuang, Existence and uniqueness of solutions of nonlinear integro-differential equations of Volterra type in a Banach space, Appl. Anal. 22 (1986), 157-166.

Department of Mathematics Education

Cheong Ju University
Cheong Ju 360-764, Korea

