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REMARK ON REGULAR MINIMAL SETS

Jung OK Yu

ABSTRACT. In this paper, we define a subgroup S(X, v) of the group
of automorphisms of universal minimal sets and give a necessary and

sufficient condition for a minimal transformation group to be regular.

Let (M, T) be a universal minimal transformation group, and let G
be the group of automorphisms of (M, T). Given a minimal transfor-
mation group (X, T'), and a homomorphism v : M — X, J. Auslander

[3] defined a subgroup of G as follows.
G(X,7) = {2 €G | ya =)

that is, a homomorphism from (M, T) to a minimal set determines a
subgroup G(X,v) of G. He showed that different homomorphisms de-
termines conjugate subgroups and also obtained an information about
homomorphisms of distal minimal sets and regular minimal sets.

In this paper, we define a subgroup S(X,v) of G and give a nec-
essary and sufficient condition for a minimal transformation group to
be regular minimal.

Throughout this paper, (X, T) will denote a transformation group
with compact Hausdorff phase space X. A closed nonempty subset A
of X is called a minimal setif for every @ € 4 the orbit 2T is a dense

subset of A. A point whose orbit closure is a minimal set is called
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an almost periodic point. If X is itself minimal, we say that it is a
minimal transformation group or a minimal set.

The compact Hausdorff space X carries a natural uniformity whose
indices are the neighborhoods of the diagonal in X x X. The points
z and y of X are called prozimal provided that for each index U of
X, there exists a t € T such that (zt,yt) € U.

Let (X, T) and (Y, T') be transformation groups. If « is a continuous
map from X to Y with n(zt) = n(2)t (¢ € X, t € T), then 7 is
called a homomorphism. A homomorphism h of X into itself is called
an endomorphism. Automorphism is defined similarly.

We denote the automorphisms of (X,T) by A(X). If every endo-
morphism of X is an automorphism, then the transformation group
(X,T) is said to be coalescent.

Let {(Xi,T) | ¢ € I} be a family of transformation groups with the
same phase group T'. The product transformation group (II; X;, T is
defined by the condition that (z; | 7 € I) € II; X; and t € T imply
(z; |iel)t=(zit|i€l).

We define E, the enveloping semigroup of (X, T), to be the closure
of T in XX, providing XX with its product topology. The minimal
right ideal Iis the non-empty subset of E with IE C I, which contains

no proper non-empty subset of the same property.

THEOREM 1 ([1], Theorem 3). Let (X,T) be a minimal set. Then
the following are equivalent.

(1) If I is a minimal right ideal contained in the enveloping semi-
group E of (X,T), then the minimal set (X,T) and (I,T) are isomor-
phic.

(2) (X, T) is isomorphic with (I,T), where I is a minimal right ideal
in the enveloping semigroup of some transformation group (Z,T).

(3) If z,y € X, then there is an endomorphism h of (X,T) such
that h(z) and y are proximal. |
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(4) If (z,y) is an almost periodic point of (X x X,T), then there
is an endomorphism h of (X, T) such that h(z) = y.

A minimal set which satisfies any one of the properties (1) through
(4) will be called regular minimal. It is well-known that regular min-

imal sets are coalescent.

DEFINITION 2 ([5]). Let T be an arbitrary topological group. A
minimal transformation group (M, T) is said to be universal if every
minimal transformation group with acting group 7' is a homomorphic
vimage of (M,T).

For any group 7', a universal minimal set exists and is unique up
to isomorphism. ([5] ,[3]).

For a given H C A(X), now we define a new subset Sp(X,v) of
G, which is motivated by G(X, 7).

DEFINITION 3. Let (M,T) be a universal minimal transformation
group, which will be fixed from now on. Given a minimal transfor-

mation group (X,T'), a homomorphism v : M — X, and a subset H
of A(X'), define

Su(X,y)={a € G| hya=+~ for some h € H}

If we take H = {1x}, the trivial subgroup of A(X), then Sy(X,7v)
coincides with G(X,~). We denote S4(x)(X,7) by (S,7), simply.

REMARK. From the definition, the following are verified easily.

1. If H is a subgroup of A(X), then Sy(X,~) is a subgroup of
G. In fact, let a1,a2 € Su(X,7), that is, hya; = v and gyas = v
for some h,g in H. Then (ghy)aras = g(hyai)as = gyas = 7.
This shows that ayag € SH(X,7), because gh € H. Next, let a €
Su(X,v). Since G is a group, there exists an a~! in G such that
aa! = 1. a € Sy(X,v) implies hya = 5 for some h € H, and so,

v =vyaa~! = h~lya~!. Therefore, ™! € Sy(X,7).



74 JUNG OK YU

2. If H and K are subsets of A(X) with H C I, then Sg(X,v) C
Sk(X,v), thus we have

G(X,7) C Su(X,7) C S(X,7) CG.

THEOREM 4. Let (M, T) be universal minimal, (X,T) a minimal,
and let H be a subgroup of A(X). If § € G, then

ﬂ_lsH(X,’Y)ﬂ = SH(X,'Yﬂ)

PROOF. Let a € Sy(X,~). It follows that hya = v for some h €
H, and hyB(B~1aB) = hyaB = vB. So, we have B~ 1af € Su(X,vB).
Conversely, let a € Sy(X,v8). Then h(yf)a = v for some h € H,
and it follows that hy(Baf~!) = v. That is, faf~! € Sy(X,v) and
o € B71Su(X,7)B.

If we take H = {1x}, then Lemma 2 (ii) ([3]) is a corollary of

Theorem 4.

COROLLARY 5. Let (M,T) be a universal minimal and let (X,T)
be minimal. If f € G, then f7'G(X,v)8 = G(X,vB).

From the Lemma 1 ([3]), we have the following.

LEMMA 6. Let (M,T) be a universal minimal transformation group
and let v : M — X be a homomorphism. The following hold.

(i) If X is minimal, then given h € A(X), there exists an a € G
such that hya = 7.

(ii) If X is regular minimal, then given a € G, there exists an
h € A(X) such that hya = 7.

PROOF. (i) Let € X. Since (h(z),z) is an almost periodic point
of (X x X, T), there exists an almost periodic point (my,ms) of (M x
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M,T) such that (y(my,v(m2)) = (h(z),z). Let a € G such that
a(my) = mg. Then ya(m;) = y(m2) = 2 and hence hya(m,) =
h(z) = 4(my). This shows that hya = .

(ii) is proved similarly as in (i).

LEMMA 7 ([1] Lemma 2). Let (X,T), (Y,T) be minimal with (Y, T)
regular minimal, and let hy and hy be homomorphisms from (X, T)
to (Y,T). Then there is a unique automorphism k of (Y, T) such that

hg = kh].

Let M be universal, X, Y minimalandlety: M — X, 7: X — Y
be homomorphisms. Then G(X,v) C G(Y,ny) is always true, but
S(X,v) c S(Y,my) is not, in general. Regular minimality of ¥ ensures

the following theorem:.

THEOREM 8. Let X be minimal and Y a regular minimal. If 7 :
X — Y is a homomorphism, then S(X,v) C S(Y,7v).

PROOF. Let o € S(X,7). Then hya = v for some h € A(X).
Given homomorphisms 7 : X — Y, and 7#h : X — Y, there is a
unique k € A(X) such that 7h = k7 by Lemma 7, we have krya =
whya = . Therefore a € S(Y, 7).

Now, we define an equivalent condition for a minimal transforma-

tion group to be regular.

THEOREM 9. Let (X,T) be regular minimal, and let (Y,T) be
minimal and let 7 : X — Y be a homomorphism. Then the following
are equivalent ;

(i) (Y, T) is regular minimal

(i) S(X,v) C S(Y,77)

PRrROOF. (i) implies (ii) follows from Theorem 8. Now, we show

that (i1) implies (i). Let (y1,y2) € (Y x Y, T) be an almost periodic
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point of (Y x Y,T). We show that there exists an automorphism k
of Y such that k(y1) = y2. Since (y1,y2) is an almost periodic point,
there exists an almost periodic point (z1,22) of (X x X, T) such that

(1) (21, 22)) = (7(z1),7(22)) = (y1,92)

where 7* : X x X — Y X Y is the map defined by n*(z,2') =

(m(z),n(z")). There exists also an almost periodic point (m;,m2) of
(M x M,T) such that

(2) 7 ((m1,m2)) = (v(m), 7(m2)) = (21, 22)

where v* is defined similarly as 7*. From (1) and (2), we obtain

(my(ma), my(m2)) = (m(21), 7(22)) = (41, 92)
Since X is regular minimal (and hence X is coalescent), there exists
an automorphism h of X such that h(z;) = 2. Define
a(mg) = my
Then
ya(msz) = v(m1) = 23
and
hya(ms) = h(zy) = 22 = y(m2)

which shows that hya = v, and therefore a € S'(X, 7). Since S(X,v) C
S(Y,ny), a € S(Y,7v). That is, krya = 7y for some automorphism
k of Y. It follows that

kyr = kr(a1) = kry(mi) = krya(ms)

=my(me) = w(22) = Y2

Therefore, Y is regular minimal.
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LEMMA 10 ([3], Lemma 3). Let (X,T) be minimal, and let v :
M — X be a homomorphism. If (X,T) is regular, and 0 € G, there

is an automorphism h of (X, T) such that yo = hr.

In [3], Auslander showed that if X is regular minimal, then G(X, )
is a normal subgroup of G. Similary, so is S(X,v). In fact, let o« €
S(X,v) and let 0 € G. Then ¢ € G implies kyo = v for some
k € A(X) by Lemma 10, and since a € S(X,7), hya = v for some
h € A(X). Furthermore, v = k=150, Thus,

khk='y(c7ac) = kh(k™'ya Dao = k(hya)o = kyo = 7.

Since khk~! € A(X), we have 07 lac € S(X,7). We conclude that

regular minimality of X implies S(X,~) is a normal subgroup of G.

REFERENCES

1. J. Auslander, Regular minimal sets I, Trans. Amer. Math. Soc. 123 (1966),
469-479.

2., Endomorphisms of minimal sets, Duke Math. J. 30 (1963),
605-614.

3., Homomorphisms of minimal {ransformation group,, Topology
9 (1970), 195-203.

4. R. Ellis, A semigroup associated with a transformation group, Trns. Amer.
Math. Soc. 94 (1960), 272-281.

5., Universal minimal sets, Proc. Amer. Math. Soc. 11 (1960),
540-543.

6. — , Homomorphisms of minimal transformation group, Topology 9
(1970), 195-203.

DEPARTMENT OF MATHEMATICS
HANNAM UNIVERSITY
TarEJON 300-791, KOREA





