REMARK ON REGULAR MINIMAL SETS

Jung Ok Yu

ABSTRACT. In this paper, we define a subgroup $S(X, \gamma)$ of the group of automorphisms of universal minimal sets and give a necessary and sufficient condition for a minimal transformation group to be regular.

Let (M,T) be a universal minimal transformation group, and let G be the group of automorphisms of (M,T). Given a minimal transformation group (X,T), and a homomorphism $\gamma: M \to X$, J. Auslander [3] defined a subgroup of G as follows.

$$G(X, \gamma) \equiv \{ \alpha \in G \mid \gamma \alpha = \gamma \}$$

that is, a homomorphism from (M,T) to a minimal set determines a subgroup $G(X,\gamma)$ of G. He showed that different homomorphisms determines conjugate subgroups and also obtained an information about homomorphisms of distal minimal sets and regular minimal sets.

In this paper, we define a subgroup $S(X,\gamma)$ of G and give a necessary and sufficient condition for a minimal transformation group to be regular minimal.

Throughout this paper, (X,T) will denote a transformation group with compact Hausdorff phase space X. A closed nonempty subset Aof X is called a *minimal set* if for every $x \in A$ the orbit xT is a dense subset of A. A point whose orbit closure is a minimal set is called

Received by the editors on June 30, 1995.

1991 Mathematics subject classifications: Primary 54H15.

an almost periodic point. If X is itself minimal, we say that it is a minimal transformation group or a minimal set.

The compact Hausdorff space X carries a natural uniformity whose indices are the neighborhoods of the diagonal in $X \times X$. The points x and y of X are called *proximal* provided that for each index U of X, there exists a $t \in T$ such that $(xt, yt) \in U$.

Let (X,T) and (Y,T) be transformation groups. If π is a continuous map from X to Y with $\pi(xt) = \pi(x)t$ $(x \in X, t \in T)$, then π is called a homomorphism. A homomorphism h of X into itself is called an endomorphism. Automorphism is defined similarly.

We denote the automorphisms of (X,T) by A(X). If every endomorphism of X is an automorphism, then the transformation group (X,T) is said to be *coalescent*.

Let $\{(X_i, T) \mid i \in I\}$ be a family of transformation groups with the same phase group T. The product transformation group $(\Pi_i X_i, T)$ is defined by the condition that $(x_i \mid i \in I) \in \Pi_i X_i$ and $t \in T$ imply $(x_i \mid i \in I)$ $t = (x_i t \mid i \in I)$.

We define E, the enveloping semigroup of (X,T), to be the closure of T in X^X , providing X^X with its product topology. The minimal right ideal I is the non-empty subset of E with $IE \subset I$, which contains no proper non-empty subset of the same property.

THEOREM 1 ([1], Theorem 3). Let (X,T) be a minimal set. Then the following are equivalent.

- (1) If I is a minimal right ideal contained in the enveloping semigroup E of (X,T), then the minimal set (X,T) and (I,T) are isomorphic.
- (2) (X,T) is isomorphic with (I,T), where I is a minimal right ideal in the enveloping semigroup of some transformation group (Z,T).
- (3) If $x, y \in X$, then there is an endomorphism h of (X, T) such that h(x) and y are proximal.

(4) If (x, y) is an almost periodic point of $(X \times X, T)$, then there is an endomorphism h of (X, T) such that h(x) = y.

A minimal set which satisfies any one of the properties (1) through (4) will be called *regular minimal*. It is well-known that regular minimal sets are coalescent.

DEFINITION 2 ([5]). Let T be an arbitrary topological group. A minimal transformation group (M,T) is said to be *universal* if every minimal transformation group with acting group T is a homomorphic image of (M,T).

For any group T, a universal minimal set exists and is unique up to isomorphism. ([5],[3]).

For a given $H \subset A(X)$, now we define a new subset $S_H(X,\gamma)$ of G, which is motivated by $G(X,\gamma)$.

DEFINITION 3. Let (M,T) be a universal minimal transformation group, which will be fixed from now on. Given a minimal transformation group (X,T), a homomorphism $\gamma:M\to X$, and a subset H of A(X), define

$$S_H(X,\gamma) = \{ \alpha \in G \mid h\gamma\alpha = \gamma \text{ for some } h \in H \}$$

If we take $H = \{1_X\}$, the trivial subgroup of A(X), then $S_H(X, \gamma)$ coincides with $G(X, \gamma)$. We denote $S_{A(X)}(X, \gamma)$ by (S, γ) , simply.

REMARK. From the definition, the following are verified easily.

1. If H is a subgroup of A(X), then $S_H(X,\gamma)$ is a subgroup of G. In fact, let $\alpha_1, \alpha_2 \in S_H(X,\gamma)$, that is, $h\gamma\alpha_1 = \gamma$ and $g\gamma\alpha_2 = \gamma$ for some h, g in H. Then $(gh\gamma)\alpha_1\alpha_2 = g(h\gamma\alpha_1)\alpha_2 = g\gamma\alpha_2 = \gamma$. This shows that $\alpha_1\alpha_2 \in S_H(X,\gamma)$, because $gh \in H$. Next, let $\alpha \in S_H(X,\gamma)$. Since G is a group, there exists an α^{-1} in G such that $\alpha\alpha^{-1} = 1$. $\alpha \in S_H(X,\gamma)$ implies $h\gamma\alpha = \gamma$ for some $h \in H$, and so, $\gamma = \gamma\alpha\alpha^{-1} = h^{-1}\gamma\alpha^{-1}$. Therefore, $\alpha^{-1} \in S_H(X,\gamma)$.

2. If H and K are subsets of A(X) with $H \subset K$, then $S_H(X,\gamma) \subset S_K(X,\gamma)$, thus we have

$$G(X,\gamma) \subset S_H(X,\gamma) \subset S(X,\gamma) \subset G$$
.

THEOREM 4. Let (M,T) be universal minimal, (X,T) a minimal, and let H be a subgroup of A(X). If $\beta \in G$, then

$$\beta^{-1}S_H(X,\gamma)\beta = S_H(X,\gamma\beta).$$

PROOF. Let $\alpha \in S_H(X, \gamma)$. It follows that $h\gamma\alpha = \gamma$ for some $h \in H$, and $h\gamma\beta(\beta^{-1}\alpha\beta) = h\gamma\alpha\beta = \gamma\beta$. So, we have $\beta^{-1}\alpha\beta \in S_H(X, \gamma\beta)$. Conversely, let $\alpha \in S_H(X, \gamma\beta)$. Then $h(\gamma\beta)\alpha = \gamma\beta$ for some $h \in H$, and it follows that $h\gamma(\beta\alpha\beta^{-1}) = \gamma$. That is, $\beta\alpha\beta^{-1} \in S_H(X, \gamma)$ and $\alpha \in \beta^{-1}S_H(X, \gamma)\beta$.

If we take $H = \{1_X\}$, then Lemma 2 (ii) ([3]) is a corollary of Theorem 4.

COROLLARY 5. Let (M,T) be a universal minimal and let (X,T) be minimal. If $\beta \in G$, then $\beta^{-1}G(X,\gamma)\beta = G(X,\gamma\beta)$.

From the Lemma 1 ([3]), we have the following.

LEMMA 6. Let (M,T) be a universal minimal transformation group and let $\gamma: M \to X$ be a homomorphism. The following hold.

- (i) If X is minimal, then given $h \in A(X)$, there exists an $\alpha \in G$ such that $h\gamma\alpha = \gamma$.
- (ii) If X is regular minimal, then given $\alpha \in G$, there exists an $h \in A(X)$ such that $h\gamma\alpha = \gamma$.

PROOF. (i) Let $x \in X$. Since (h(x), x) is an almost periodic point of $(X \times X, T)$, there exists an almost periodic point (m_1, m_2) of $(M \times X, T)$

M,T) such that $(\gamma(m_1,\gamma(m_2)) = (h(x),x)$. Let $\alpha \in G$ such that $\alpha(m_1) = m_2$. Then $\gamma\alpha(m_1) = \gamma(m_2) = x$ and hence $h\gamma\alpha(m_1) = h(x) = \gamma(m_1)$. This shows that $h\gamma\alpha = \gamma$.

(ii) is proved similarly as in (i).

LEMMA 7 ([1] Lemma 2). Let (X,T), (Y,T) be minimal with (Y,T) regular minimal, and let h_1 and h_2 be homomorphisms from (X,T) to (Y,T). Then there is a unique automorphism k of (Y,T) such that $h_2 = kh_1$.

Let M be universal, X, Y minimal and let $\gamma: M \to X$, $\pi: X \to Y$ be homomorphisms. Then $G(X,\gamma) \subset G(Y,\pi\gamma)$ is always true, but $S(X,\gamma) \subset S(Y,\pi\gamma)$ is not, in general. Regular minimality of Y ensures the following theorem.

THEOREM 8. Let X be minimal and Y a regular minimal. If π : $X \to Y$ is a homomorphism, then $S(X, \gamma) \subset S(Y, \pi\gamma)$.

PROOF. Let $\alpha \in S(X, \gamma)$. Then $h\gamma\alpha = \gamma$ for some $h \in A(X)$. Given homomorphisms $\pi : X \to Y$, and $\pi h : X \to Y$, there is a unique $k \in A(X)$ such that $\pi h = k\pi$ by Lemma 7, we have $k\pi\gamma\alpha = \pi h\gamma\alpha = \pi\gamma$. Therefore $\alpha \in S(Y, \pi\gamma)$.

Now, we define an equivalent condition for a minimal transformation group to be regular.

THEOREM 9. Let (X,T) be regular minimal, and let (Y,T) be minimal and let $\pi: X \to Y$ be a homomorphism. Then the following are equivalent;

- (i) (Y,T) is regular minimal
- (ii) $S(X, \gamma) \subset S(Y, \pi \gamma)$

PROOF. (i) implies (ii) follows from Theorem 8. Now, we show that (ii) implies (i). Let $(y_1, y_2) \in (Y \times Y, T)$ be an almost periodic

point of $(Y \times Y, T)$. We show that there exists an automorphism k of Y such that $k(y_1) = y_2$. Since (y_1, y_2) is an almost periodic point, there exists an almost periodic point (x_1, x_2) of $(X \times X, T)$ such that

(1)
$$\pi^*((x_1, x_2)) = (\pi(x_1), \pi(x_2)) = (y_1, y_2)$$

where $\pi^*: X \times X \to Y \times Y$ is the map defined by $\pi^*(x, x') = (\pi(x), \pi(x'))$. There exists also an almost periodic point (m_1, m_2) of $(M \times M, T)$ such that

(2)
$$\gamma^*((m_1, m_2)) = (\gamma(m_1), \gamma(m_2)) = (x_1, x_2)$$

where γ^* is defined similarly as π^* . From (1) and (2), we obtain

$$(\pi\gamma(m_1), \pi\gamma(m_2)) = (\pi(x_1), \pi(x_2)) = (y_1, y_2)$$

Since X is regular minimal (and hence X is coalescent), there exists an automorphism h of X such that $h(x_1) = x_2$. Define

$$\alpha(m_2) = m_1$$

Then

$$\gamma\alpha(m_2) = \gamma(m_1) = x_1$$

and

$$h\gamma\alpha(m_2) = h(x_1) = x_2 = \gamma(m_2)$$

which shows that $h\gamma\alpha = \gamma$, and therefore $\alpha \in S(X, \gamma)$. Since $S(X, \gamma) \subset S(Y, \pi\gamma)$, $\alpha \in S(Y, \pi\gamma)$. That is, $k\pi\gamma\alpha = \pi\gamma$ for some automorphism k of Y. It follows that

$$ky_1 = k\pi(x_1) = k\pi\gamma(m_1) = k\pi\gamma\alpha(m_2)$$

= $\pi\gamma(m_2) = \pi(x_2) = y_2$

Therefore, Y is regular minimal.

LEMMA 10 ([3], Lemma 3). Let (X,T) be minimal, and let γ : $M \to X$ be a homomorphism. If (X,T) is regular, and $\sigma \in G$, there is an automorphism h of (X,T) such that $\gamma \sigma = h \gamma$.

In [3], Auslander showed that if X is regular minimal, then $G(X, \gamma)$ is a normal subgroup of G. Similary, so is $S(X, \gamma)$. In fact, let $\alpha \in S(X, \gamma)$ and let $\sigma \in G$. Then $\sigma \in G$ implies $k\gamma\sigma = \gamma$ for some $k \in A(X)$ by Lemma 10, and since $\alpha \in S(X, \gamma)$, $h\gamma\alpha = \gamma$ for some $h \in A(X)$. Furthermore, $\gamma = k^{-1}\gamma\sigma^{-1}$. Thus,

$$khk^{-1}\gamma(\sigma^{-1}\alpha\sigma) = kh(k^{-1}\gamma\sigma^{-1})\alpha\sigma = k(h\gamma\alpha)\sigma = k\gamma\sigma = \gamma.$$

Since $khk^{-1} \in A(X)$, we have $\sigma^{-1}\alpha\sigma \in S(X,\gamma)$. We conclude that regular minimality of X implies $S(X,\gamma)$ is a normal subgroup of G.

REFERENCES

- 1. J. Auslander, Regular minimal sets I, Trans. Amer. Math. Soc. 123 (1966), 469-479.
- 2. _____, Endomorphisms of minimal sets, Duke Math. J. **30** (1963), 605-614.
- 3. _____, Homomorphisms of minimal transformation group,, Topology 9 (1970), 195-203.
- 4. R. Ellis, A semigroup associated with a transformation group, Trns. Amer. Math. Soc. 94 (1960), 272-281.
- 5. ______, Universal minimal sets, Proc. Amer. Math. Soc. 11 (1960), 540-543.
- 6. _____, Homomorphisms of minimal transformation group, Topology 9 (1970), 195-203.

DEPARTMENT OF MATHEMATICS HANNAM UNIVERSITY TAEJON 300-791, KOREA