A NOTE ON THE LIPSCHITZ CLASSES OF PERIODIC STOCHASTIC PROCESSES

Jong Mi Choo

Abstract

In this paper, in order to generalize the Theorem[1], it was attempted to generalize the method to prove the Theorem.

1. Introduction

Throughout this paper, (Ω, \mathcal{F}, P) is the underlying probability space and $X(t, \omega), t \in \mathbf{R}$, is a stochastic process of the r-th order, $r \in[1, \infty)$, that is,

$$
\|X(t, \omega)\|_{r}=\left(E|X(t, \omega)|^{r}\right)^{\frac{1}{r}}<\infty
$$

We say $X(t, \omega)$ is periodic with period 2π, if

$$
\|X(t+2 \pi, \omega)-X(t, \omega)\|_{r}=0 \quad \text { for every } t
$$

and

$$
\int_{-\pi}^{\pi}\|X(t, \omega)\|_{r}^{r} d t<\infty
$$

The class of 2π-periodic processes of the r-th order will be denoted by L_{p}^{r}.

Let $\phi(h)$ be a positive nondecreasing function of $\mathrm{h} \in(0,1]$. Write.

$$
\Delta_{h}^{j} X(t, \omega)=\sum_{\nu=0}^{j}(-1)^{j-\nu}\binom{j}{\nu} X(t+\nu h, \omega)
$$

This paper was supported by research fund, Mokwon University, 1994. Received by the editors on June 23, 1995.
1991 Mathematics subject classifications: Primary 60G12.
where j is a positive integer. The class of $X(t, \omega)$ with the property

$$
\sup _{h>0} \int_{-\pi}^{\pi}\left(\frac{\left\|\Delta_{h}^{j} X(t, \omega)\right\|_{r}}{\phi(h)}\right)^{r} d t<\infty
$$

is denoted by $\Delta_{p, r}^{*}(\phi)$ and is called the Lipschitz class $\Delta_{p, r}^{*}(\phi)$.
For a stochastic process $X(t, \omega)$ of L_{p}^{r} which belong to $\Delta_{p, r}^{*}(\phi)$, we consider the Fourier series

$$
X(t, \omega) \sim \sum_{n=-\infty}^{\infty} C_{n}(\omega) e^{i n t},
$$

where

$$
C_{n}(\omega)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(t, \omega) e^{-i n t} d t
$$

In this study, in order to generalize the Theorem[1], it was attempted to generalize the method to prove the Theorem.

Let $I(h)$ be a positive non decreasing function on $(0,1]$ such that

$$
\begin{equation*}
I(2 h) \leq K_{1} I(h) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{h} \frac{u^{j p}}{I(u)} d u \leq K_{2} \frac{h^{j p+1}}{I(h)} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\int_{h}^{1} \frac{d u}{I(u)} \leq K_{3} \frac{h}{I(h)} \tag{3}
\end{equation*}
$$

where K_{1}, K_{2}, K_{3} are constants. We put

$$
A_{p}(X, I, a)=\int_{0}^{1} \frac{1}{I(h)}\left(\int_{-\pi}^{\pi}\left\|\Delta_{h}^{j} X(t, \omega)\right\|_{a}^{a} d t\right)^{\frac{p}{a}} d h
$$

$$
\begin{gathered}
B_{p}\left(X, I, a^{\prime}\right)=\sum_{n=1}^{\infty} \frac{n^{-2}}{I\left(\frac{1}{n}\right)}\left(\sum_{|k|>n}\left\|C_{k}(\omega)\right\|_{a}^{a^{\prime}}\right)^{\frac{p}{a^{\prime}}} \\
C_{p}\left(X, I, a^{\prime}\right)=\sum_{n=1}^{\infty} \frac{n^{-(2+j p)}}{I\left(\frac{1}{n}\right)}\left(\sum_{|k|=1}^{n} k^{j a^{\prime}}\left\|C_{k}(\omega)\right\|_{a}^{a^{\prime}}\right)^{\frac{p}{a^{\prime}}}
\end{gathered}
$$

where $a \geq 1, \frac{1}{a}+\frac{1}{a^{\prime}}=1$, and $0<p \leq a^{\prime}$.
We give the following Lemma.
Lemma. The conditions $B_{p}\left(X, I, a^{\prime}\right)<\infty$ and $C_{p}\left(X, I, a^{\prime}\right)<\infty$ are, respectively, equivalent to the relations

$$
B_{p}^{*}\left(X, I, a^{\prime}\right)=\sum_{k=0}^{\infty} \frac{2^{-k}}{I\left(\frac{1}{2^{k}}\right)}\left(\sum_{\nu=2^{k}}^{\infty}\left\|C_{\nu}(\omega)\right\|_{a}^{a^{\prime}}\right)^{\frac{p}{a^{\prime}}}<\infty
$$

and

$$
C_{p}^{*}\left(X, I, a^{\prime}\right)=\sum_{k=0}^{\infty} \frac{2^{-(j p+1) k}}{I\left(\frac{1}{2^{k}}\right)}\left(\sum_{\nu=1}^{2^{k}} \nu^{j a^{\prime}}\left\|C_{\nu}(\omega)\right\|_{a}^{a^{\prime}}\right)^{\frac{p}{a^{\prime}}}<\infty
$$

From now on K is a constant which may be different in each occurrence.

Theorem 1. (I) The relations $B_{p}\left(X, I, a^{\prime}\right)<\infty$ and $C_{p}\left(X, I, a^{\prime}\right)<$ ∞ are equivalent. (II) If $a \geq 2, \frac{1}{a}+\frac{1}{a^{\prime}}=1$ and $0<p \leq a^{\prime}$, then the fact that one of the expressions $B_{p}\left(X, I, a^{\prime}\right)$ and $C_{p}\left(X, I, a^{\prime}\right)$ is finite implies that $A_{p}(X, I, a)$ is finite. (III) If $1<a \leq 2, \frac{1}{a}+\frac{1}{a^{\prime}}=1$ and $0<p \leq a^{\prime}$, then the fact that $A_{p}(X, I, a)$ is finite implies that $B_{p}\left(X, I, a^{\prime}\right)$ and $C_{p}\left(X, I, a^{\prime}\right)$ are finite.

Proof. (I) It is sufficient to show that $B_{p}^{*}\left(X, I, a^{\prime}\right)<\infty$ is equivalent to $C_{p}^{*}\left(X, I, a^{\prime}\right)<\infty$. We know that

$$
\begin{aligned}
C_{p}^{*}\left(X, I, a^{\prime}\right) & \leq \sum_{k=0}^{\infty} \frac{2^{-(j p+1) k}}{I\left(\frac{1}{2^{k}}\right)}\left[\sum_{m=0}^{k}\left(\sum_{\nu=2^{m}}^{2^{m+1}} \nu^{j a^{\prime}}\left\|C_{\nu}(\omega)\right\|_{a}^{a^{\prime}}\right)\right]^{\frac{p}{a^{\prime}}} \\
& \leq K \sum_{k=0}^{\infty} \frac{2^{-(j p+1) k}}{I\left(\frac{1}{2^{k}}\right)}\left[\sum_{m=0}^{k} 2^{m j a^{\prime}} \sum_{\nu=2^{m}}^{2^{m+1}}\left\|C_{\nu}(\omega)\right\|_{a}^{a^{\prime}}\right]^{\frac{p}{a^{\prime}}}
\end{aligned}
$$

Since $0<p \leq a^{\prime}$, we find from the last inequality that

$$
\begin{aligned}
C_{p}^{*}\left(X, I, a^{\prime}\right) & \leq K \sum_{k=0}^{\infty} \frac{2^{-(j p+1) k}}{I\left(\frac{1}{2^{k}}\right)}\left[\sum_{m=0}^{k} 2^{m j p}\left(\sum_{\nu=2^{m}}^{2^{m+1}}\left\|C_{\nu}(\omega)\right\|_{a}^{a^{\prime}}\right)^{\frac{p}{a^{\prime}}}\right] \\
& =K \sum_{m=0}^{\infty} 2^{m j p}\left(\sum_{\nu=2^{m}}^{2^{m+1}}\left\|C_{\nu}(\omega)\right\|_{a}^{a^{\prime}}\right)^{\frac{p}{a^{\prime}}} \sum_{k=m}^{\infty} \frac{2^{-(j p+1) k}}{I\left(\frac{1}{2^{k}}\right)}
\end{aligned}
$$

In addition,

$$
\sum_{k=m}^{\infty} \frac{2^{-(j p+1) k}}{I\left(\frac{1}{2^{k}}\right)} \leq K \sum_{k=m}^{\infty} \int_{\frac{1}{2^{k+1}}}^{\frac{1}{2^{k}}} \frac{u^{j p}}{I(u)} d u \leq K \int_{0}^{2^{-m}} \frac{u^{j p}}{I(u)} d u
$$

From this last and (2) we have

$$
\sum_{k=m}^{\infty} \frac{2^{-(j p+1) k}}{I\left(\frac{1}{2^{k}}\right)} \leq K \frac{2^{-(j p+1) m}}{I\left(\frac{1}{2^{m}}\right)}
$$

Hence,

$$
\begin{aligned}
C_{p}^{*}\left(X, I, a^{\prime}\right) & \leq K \sum_{m=0}^{\infty} \frac{2^{-m}}{I\left(\frac{1}{2^{m}}\right)}\left(\sum_{\nu=2^{m}}^{2^{m+1}}\left\|C_{\nu}(\omega)\right\|_{a}^{a^{\prime}}\right)^{\frac{p}{a^{\prime}}} \\
& \leq K \sum_{m=0}^{\infty} \frac{2^{-m}}{I\left(\frac{1}{2^{m}}\right)}\left(\sum_{\nu=2^{m}}^{\infty}\left\|C_{\nu}(\omega)\right\|_{a}^{a^{\prime}}\right)^{\frac{p}{a^{\prime}}} \\
& =K B_{p}^{*}\left(X, I, a^{\prime}\right)<\infty
\end{aligned}
$$

Let us prove the converse;

$$
\begin{aligned}
B_{p}^{*}\left(X, I, a^{\prime}\right) & =\sum_{m=0}^{\infty} \frac{2^{-m}}{I\left(\frac{1}{2^{m}}\right)}\left(\sum_{\nu=2^{m}}^{\infty}\left\|C_{\nu}(\omega)\right\|_{a}^{a^{\prime}}\right)^{\frac{p}{a^{\prime}}} \\
& =\sum_{m=0}^{\infty} \frac{2^{-m}}{I\left(\frac{1}{2^{m}}\right)}\left(\sum_{k=m}^{\infty} \sum_{\nu=2^{k}}^{2^{k+1}}\left\|C_{\nu}(\omega)\right\|_{a}^{a^{\prime}}\right)^{\frac{p}{a^{\prime}}} \\
& \leq \sum_{m=0}^{\infty} \frac{2^{-m}}{I\left(\frac{1}{2^{m}}\right)}\left(\sum_{k=m}^{\infty} 2^{-j a^{\prime} k} \sum_{\nu=2^{k}}^{2^{k+1}} \nu^{j a^{\prime}}\left\|C_{\nu}(\omega)\right\|_{a}^{a^{\prime}}\right)^{\frac{p}{a^{\prime}}} .
\end{aligned}
$$

Hence, we find that, for $0<p \leq a^{\prime}$,

$$
\begin{aligned}
B_{p}^{*}\left(X, I, a^{\prime}\right) & \leq \sum_{m=0}^{\infty} \frac{2^{-m}}{I\left(\frac{1}{2^{m}}\right)} \sum_{k=m}^{\infty} 2^{-j p k}\left(\sum_{\nu=2^{k}}^{2^{k+1}} \nu^{j a^{\prime}}\left\|C_{\nu}(\omega)\right\|_{a}^{a^{\prime}}\right)^{\frac{p}{a^{\prime}}} \\
& =\sum_{k=0}^{\infty} 2^{-j p k}\left(\sum_{\nu=2^{k}}^{2^{k+1}} \nu^{j a^{\prime}}\left\|C_{\nu}(\omega)\right\|_{a}^{a^{\prime}}\right)^{\frac{p}{a^{\prime}}} \sum_{m=0}^{k} \frac{2^{-m}}{I\left(\frac{1}{2^{m}}\right)} .
\end{aligned}
$$

Now from the relations (1) and (3), we can show that

$$
\sum_{m=0}^{k} \frac{2^{-m}}{I\left(\frac{1}{2^{m}}\right)} \leq K \sum_{m=0}^{k} \int_{\frac{1}{2^{m+1}}}^{\frac{1}{2^{m}}} \frac{d u}{I(u)}=K \int_{\frac{1}{2^{k+1}}}^{1} \frac{d u}{I(u)} \leq K \frac{2^{-k}}{I\left(\frac{1}{2^{k}}\right)}
$$

Consequently,

$$
B_{p}^{*}\left(X, I, a^{\prime}\right) \leq K \sum_{k=0}^{\infty} \frac{2^{-(j p+1) k}}{I\left(\frac{1}{2^{k}}\right)}\left(\sum_{\nu=1}^{2^{k+1}} \nu^{j a^{\prime}}\left\|C_{\nu}(\omega)\right\|_{a}^{a^{\prime}}\right)^{\frac{p}{a^{\prime}}}=K C_{p}^{*}\left(X, I, a^{\prime}\right)
$$

(II) The Fourier coefficient of $\Delta_{h}^{j} X(t, \omega)$ is $C_{n}(\omega)\left(1-e^{i n h}\right)^{j}$. For $a \geq 2, \frac{1}{a}+\frac{1}{a^{\prime}}=1,0<p \leq a^{\prime}$, by the Hausdorff-Young inequality, we have

$$
\left(\int_{-\pi}^{\pi}\left|\Delta_{h}^{j} X(t, \omega)\right|^{a} d t\right)^{\frac{1}{a}} \leq\left(\sum_{k=-\infty}^{\infty}\left|C_{k}(\omega)\right|^{a^{\prime}}\left|e^{i k h}-1\right|^{j a^{\prime}}\right)^{\frac{1}{a^{\prime}}}
$$

Thus

$$
\left(\int_{-\pi}^{\pi}\left|\Delta_{h}^{j} X(t, \omega)\right|^{a} d t\right)^{\frac{a^{\prime}}{a}} \leq \sum_{k=-\infty}^{\infty}\left|C_{k}(\omega)\right|^{a^{\prime}}\left|e^{i k h}-1\right|^{j a^{\prime}}
$$

Taking expectations of both sides, we have

$$
E\left[\int_{-\pi}^{\pi}\left|\Delta_{h}^{j} X(t, \omega)\right|^{a} d t\right]^{\frac{a^{\prime}}{a}} \leq \sum_{k=-\infty}^{\infty}\left\|C_{k}(\omega)\right\|_{a}^{a^{\prime}}\left|e^{i k h}-1\right|^{j a^{\prime}}
$$

But

$$
\begin{aligned}
E\left[\int_{-\pi}^{\pi}\left|\Delta_{h}^{j} X(t, \omega)\right|^{a} d t\right]^{\frac{a^{\prime}}{a}} & =E\left(\int_{-\pi}^{\pi}\left(\left|\Delta_{h}^{j} X(t, \omega)\right|^{a^{\prime}}\right)^{\frac{a}{a^{\prime}}} d t\right)^{\frac{a^{\prime}}{a}} \\
& \geq\left(\int_{-\pi}^{\pi}\left(E\left|\Delta_{h}^{j} X(t, \omega)\right|^{a^{\prime}}\right)^{\frac{a}{a^{\prime}}} d t\right)^{\frac{a^{\prime}}{a}} \\
& =\left(\int_{-\pi}^{\pi}\left(\left\|\Delta_{h}^{j} X(t, \omega)\right\|_{a}^{a^{\prime}}\right)^{\frac{a}{a^{\prime}}} d t\right)^{\frac{a^{\prime}}{a}} \\
& =\left(\int_{-\pi}^{\pi}\left\|\Delta_{h}^{j} X(t, \omega)\right\|_{a}^{a} d t\right)^{\frac{a^{\prime}}{a}}
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
A_{p}(X, I, a) & =\int_{0}^{1} \frac{1}{I(h)}\left(\int_{-\pi}^{\pi}\left\|\Delta_{h}^{j} X(t, \omega)\right\|_{a}^{a} d t\right)^{\frac{p}{a}} d h \\
& \leq K \int_{0}^{1} \frac{1}{I(h)}\left(\sum_{k=-\infty}^{\infty}\left\|C_{k}(\omega)\right\|_{a}^{a^{\prime}}\left|e^{i h k}-1\right|^{j a^{\prime}}\right)^{\frac{p}{a^{\prime}}} d h \\
& =K \int_{0}^{1} \frac{1}{I(h)}\left(\sum_{k=-\infty}^{\infty}\left\|C_{k}(\omega)\right\|_{a}^{a^{\prime}}\left|\sin \frac{k h}{2}\right|^{j a^{\prime}}\right)^{\frac{p}{a^{\prime}}} d h .
\end{aligned}
$$

Since $0<p \leq a^{\prime}$, we find from the last inequality that

$$
\begin{aligned}
A_{p}(X, I, a) & \leq K \int_{0}^{1} \frac{1}{I(h)}\left(\sum_{|k|=1}^{n}\left\|C_{k}(\omega)\right\|_{a}^{a^{\prime}}\left|\sin \frac{k h}{2}\right|^{j a^{\prime}}\right)^{\frac{p}{a^{\prime}}} d h \\
& +K \int_{0}^{1} \frac{1}{I(h)}\left(\sum_{|k|>n}\left\|C_{k}(\omega)\right\|_{a}^{a^{\prime}}\left|\sin \frac{k h}{2}\right|^{j a^{\prime}}\right)^{\frac{p}{a^{\prime}}} d h \\
& \leq K \sum_{n=1}^{\infty} \int_{\frac{1}{n+1}}^{\frac{1}{n}} \frac{h^{j p}}{I(h)} d h\left(\sum_{|k|=1}^{n} k^{j a^{\prime}}\left\|C_{k}(\omega)\right\|_{a}^{a^{\prime}}\right)^{\frac{p}{a^{\prime}}} \\
& +K \sum_{n=1}^{\infty} \int_{\frac{1}{n+1}}^{\frac{1}{n}} \frac{d h}{I(h)}\left(\sum_{|k|>n}\left\|C_{k}(\omega)\right\|_{a}^{a^{\prime}}\right)^{\frac{p}{a^{\prime}}} \\
& \leq K \sum_{n=1}^{\infty} \frac{n^{-(j p+2)}}{I\left(\frac{1}{n}\right)}\left(\sum_{|k|=1}^{n} k^{j a^{\prime}}\left\|C_{k}(\omega)\right\|_{a}^{a^{\prime}}\right)^{\frac{p}{a^{\prime}}} \\
& +K \sum_{n=1}^{\infty} \frac{n^{-2}}{I\left(\frac{1}{n}\right)}\left(\sum_{|k|>n}\left\|C_{k}(\omega)\right\|_{a}^{a^{\prime}}\right)^{\frac{p}{a^{\prime}}} \\
& =K C_{p}\left(X, I, a^{\prime}\right)+K B_{p}\left(X, I, a^{\prime}\right) .
\end{aligned}
$$

(III) In case $1<a \leq 2, \frac{1}{a}+\frac{1}{a^{\prime}}=1$, the Hausdorff-Young inequality gives us

$$
\left(\sum_{k=-\infty}^{\infty}\left|C_{k}(\omega)\right|^{a^{\prime}}\left|\sin \frac{k h}{2}\right|^{j a^{\prime}}\right)^{\frac{1}{a^{\prime}}} \leq\left(\int_{-\pi}^{\pi}\left|\Delta_{h}^{j} X(t, \omega)\right|^{a} d t\right)^{\frac{1}{a}}
$$

Thus we have

$$
\left(\sum_{k=-\infty}^{\infty}\left|C_{k}(\omega)\right|^{a^{\prime}}\left|\sin \frac{k h}{2}\right|^{j a^{\prime}}\right)^{\frac{a}{a^{\prime}}} \leq \int_{-\pi}^{\pi}\left|\Delta_{h}^{j} X(t, \omega)\right|^{a} d t
$$

Taking expectations of both sides, we have

$$
E\left(\sum_{k=-\infty}^{\infty}\left|C_{k}(\omega)\right|^{a^{\prime}}\left|\sin \frac{k h}{2}\right|^{j a^{\prime}}\right)^{\frac{a}{a^{\prime}}} \leq \int_{-\pi}^{\pi}\left\|\Delta_{h}^{j} X(t, \omega)\right\|_{a}^{a} d t
$$

By the Minkowski inequality, the left hand side of this inequality is not less than

$$
\left\{\sum_{k=-\infty}^{\infty}\left[E\left|C_{k}(\omega)\right|^{a}\left|\sin \frac{k h}{2}\right|^{j a}\right]^{\frac{a^{\prime}}{a}}\right\}^{\frac{a}{a^{\prime}}}=\left\{\sum_{k=-\infty}^{\infty}| | C_{k}(\omega)| |_{a}^{a^{\prime}}\left|\sin \frac{k h}{2}\right|^{j a^{\prime}}\right\}^{\frac{a}{a^{\prime}}}
$$

So,

$$
\left\{\sum_{k=-\infty}^{\infty}\left\|C_{k}(\omega)\right\|_{a}^{a^{\prime}}\left|\sin \frac{k h}{2}\right|^{j a^{\prime}}\right\}^{\frac{1}{a^{\prime}}} \leq\left(\int_{-\pi}^{\pi}\left\|\Delta_{h}^{j} X(t, \omega)\right\|_{a}^{a} d t\right)^{\frac{1}{a}}
$$

Consequently,

$$
\begin{aligned}
A_{p}(X, I, a) & =\int_{0}^{1} \frac{1}{I(h)}\left(\int_{-\pi}^{\pi}\left\|\Delta_{h}^{j} X(t, \omega)\right\|_{a}^{a} d t\right)^{\frac{p}{a}} d h \\
& \geq \int_{0}^{1} \frac{1}{I(h)}\left(\sum_{k=-\infty}^{\infty}\left\|C_{k}(\omega)\right\|_{a}^{a^{\prime}}\left|\sin \frac{k h}{2}\right|^{j a^{\prime}}\right)^{\frac{p}{a^{\prime}}} d h \\
& \geq K \int_{0}^{1} \frac{1}{I(h)}\left(\sum_{|k|=1}^{n}| | C_{k}(\omega) \|_{a}^{a^{\prime}}\left|\sin \frac{k h}{2}\right|^{j a^{\prime}}\right)^{\frac{p}{a^{\prime}}} d h
\end{aligned}
$$

Since $\sin k h \geq K k h$ for $k h \leq 1$, we find from the last inequality that

$$
\begin{aligned}
A_{p}(X, I, a) & \geq K \sum_{n=1}^{\infty} \int_{\frac{1}{n+1}}^{\frac{1}{n}} \frac{h^{j p}}{I(h)} d h\left(\sum_{|k|=1}^{n} k^{j a^{\prime}}\left\|C_{k}(\omega)\right\|_{a}^{a^{\prime}}\right)^{\frac{p}{a^{\prime}}} \\
& \geq K \sum_{n=1}^{\infty} \frac{n^{-(j p+2)}}{I\left(\frac{1}{n}\right)}\left(\sum_{|k|=1}^{n} k^{j a^{\prime}}\left\|C_{k}(\omega)\right\|_{a}^{a^{\prime}}\right)^{\frac{p}{a^{\prime}}} \\
& =K C_{p}\left(X, I, a^{\prime}\right)
\end{aligned}
$$

We write the best approximation by trigonometric polynomials in L_{p}^{2} by $E_{N}^{(2)}$, that is,

$$
E_{N}^{(2)}=\left[\sum_{|n| \geq N}\left\|C_{n}(\omega)\right\|_{2}^{2}\right]^{\frac{1}{2}}
$$

Then we have
Theorem 2. The following two relations are equivalent:

$$
\sum_{n=1}^{\infty} n^{-\frac{1}{2}} E_{n}^{(2)}<\infty
$$

and

$$
{ }_{2}\| \| C_{n}(\omega)\left\|_{2}\right\|_{1}<\infty .
$$

Proof. Take $a=2, p=1$ and $I(h)=h^{\frac{3}{2}}$. Then $B_{1}(X, I, 2)=$ $\sum_{n=1}^{\infty} n^{-\frac{1}{2}} E_{n}^{(2)}$ and we have the conclusion by the above Theorem 1 and Theorem 3[3].

References

1. Choo, J. M., A Note on the Lipschitz Classes of Periodic Stochastic Processes of the Second Order, J. Chungcheong Math. Soc. 5 (1992), 103-110.
2. T. Kawata, Lipschitz Classes and Fourier Series of Stochastic Processes, Tokyo J. Math 11(2) (1988), 269-280.
3. M. Kinukawa, Some generalizations of contraction theorems for Fourier series, Pacific J. Math. 109 (1983), 121-134.
4. W. Kohnen, Estimates for Fourier Coefficients of Siegel Cusp Forms.of Degree Two,II, Nagoya Math. J. 128 (1992), 171-176.

Department of Mathematics

Mokwon University
Taejon 301-729, Korea

