KX

Performance Analysis of Highly Effective
Proposed Direction Finding Method
At HY AT R g g A7y 2P A A

111-Keun Rhee*

o @ 2

% This paper was supported by NON DIRECTED RESEARCH FUND. Kerea Research Foundation, 1993,

ABSTRACT

The main purpose of this paper is to show the realizability of the proposed highly effective direction finiding

method which performs extremely well under the circumstances like low signal-to-noise ratio (S/N), very closely

located signal sources, and so on,

In order to achieve the purpose, the degree to which the proposed method is superior to the MUSIC{multiple

signal classification) with respect to the S/N is discussed, and the result is analyzed in terms of the S/N and the

number of sample data,
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I. Introduction

Array signal processing is concemed as a field
of analyzing and processing procedure of received
data from a spatially distributed sensor array in
noise. One of the essential goals of passive sonar
or radar array signal processing is to estimate the
direction-of-arrival {DOA) of distant source signals
(1-3). Compared with existing spectral estimation
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techniques {4-6), the MUSIC (MUltiple Slgnal
Classification) [7-8] developed by Schmidt in 1981
is based on the eigenstructure algorithm and
gives better resolution with less complexity of
computation in DOA estimation. Since the advent
of the MUSIC which is still used as a benchmark
for the subsequently developing DOA estimation
methods, there has been an epoch-making devel-
opment in the area of DOA estimation and have
been introduced lots of high resolution DOA esti-
mation methods based on the eigenstructure
algorithm [9-11). However, the eigenstructure
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algorithm has crucial requirements that the additive
SENSOr noises are spatualiv winte Gaussian and
uncorreldated from sensor fo sensor, Due to those
requirements, in the cases of correlated noise
fields, non-Gaussian noises, andfor low S/N, the
MUSIC often deteriorates its DOA estimation
performance.

Recently, some other eigenstructure-based
methods {12, 13, 16] have been suggested to com-
pensate partially for the MUSIC s disadvantages
stated above. In [14], a highly effective modified
eigenstructure-based DOA estimation method has
been proposed and compared with the previously
developed method, under the circumstances such
as correlated sensor noises, very closely located
signal sources, and low S/N. The proposed method
uses new data sequence obtained by auto-convol-
ution operation on the original data sequence
from sensor of array, different from the existing
DOA estimation methods which direclty use the
received original data sequence [1-13). The key
to the proposed method is to retain information
on all the other data points in correlation
operations with a constant lag and consequently
improve its resolution for DOA estimation,

One of the main aims at this paper is to derive
theoretically the S/N improvement of the proposed
method over the MUSIC taken as a benchmark
for the methods using original data sequence
directly, and the other is to verify the superiority
of the proposed method to the MUSIC in terms
of the number of data and the S/N.

To achieve these goals, the derivation and DOA
estimation procedure of the proposed method
are briefly described in Section II. Section III
verifies and analyzes the theoretical improvement
of the S/N for the proposed method over the
MUSIC. Lastly, this study is summarized and
concluded with closing remarks in Section 1V,

II. Signal and Noise Model

With the ) narrow-band source signals incident

to a uniform linear array of ¢ sensors from
ditections 14, ¢, 0y, the signals recevied at
DR U Sennay o bie W itien g

\f

r ity = Y st~ {i-1{DfcY sind,) +x (B, (1)
m—)
where

Sm{#) = the m th source signal,

{}=the sensor spacing.

¢ = the wave propagation velocity,

0 =the DOA of the »z th source,

x,(¢) = the additive noise at the ¢ the sensor, with
independent and identically distributed {i.i.d) x
(1), x(2),....x{N).

The complex envelope representation [11] can be
applied to the m th narrow-band source signal s
(¢) with center frequency ., for r(#) in (1) to

obtatin:
hYS
rt)y= S st exp [ — j wy ton ]+ 22, (2)
m ]
where
T = (= 1) (Dfc) sin By, (3}

The received signals on the ¢ sensors can be
expressed in the vector form:

M

r(t) =m‘::la(9szm(t) +x(t), (4)
or

rit) =A(B)stt) +x(t), (5)
where

) = [#,(2), 7plE),....rqlt) ],
sTUE) = [ 5(8), sp(8),....5m(8) ],
X1t =[x {8), x,(8),... %03 ],

and the columns of the @ X M direction matrix A
() are composed of the directional-vectors
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expressed as

a't@.) =11, expl =7 o0 tur 1

expl = j an tug b 82Dl = F o Trge 1) {6)

Now, we briefly describe the signal and noise
model for the proposed DOA estimation method
and its processing procedure [14]. Assuming that
the additive noises are zero-mean and uncorrelated
with the source singals, the Fourier transform of
the received signal vector in (4) or (5) has the

form of
F=AS+X, (7)
where

F=F[r), $=&s], X=F[x],
# denotes the Fourier transform operator,

FT={[F/lw), Fylw),. . Folo)),

Then, the spectral density matrix L;,, of r in (5)

is obtained as [15]

L) =E[F F*]
=APA*+ Dy, (8)

where
P=E[$ 8*] and Dy, = E[X X* ).

Now, the new signals for the proposed method
are built by auto-convolution operations on the
received signals as the ¢ th sensor as

nz;i(t):ri(t)@ri(t), (9)

where
@ represents the convolution operator.

These new signals 7,,,;(¢) can be expressed., in the
frequency domain, as the corresponding vector :

FiT=[ Fi¥{m), Filw),... . FoHw)]. (1

In order to efficiently handle those matrices a
new matrix operator A, called a “delta product”.
performing a component to component multipli-
cation, is introduced as

AdB:C“_“ﬂ'ij'buZC,j, (11}

where
matrices A, B, and C are of identical dirnensions.

Then, by definition, the spectral density matrix
of the new signal (¢} is expressed as

Lizy=E(Fy Fip*]
= FE[(FF*)%¢]
= E{[(AS+X){AS +X)*]82}

= E[(AS $* A* + ASX*+ XS*A* + XX*)42], (12)

where

A2 is the operator derived from (11) such that
A=A A A,
Note that in (12}, each element inside the expec-
tation bracket is the same as an element of Li,,.
but is raised to the power of 2.

Using the characteristics of A product and
conditions given, (12) can be simplified as [15]

Lipn= AP A+ 2[(APA*)82~ A, P, A* 14 2(APA*) A E[ XX*]

+2(APA®) A E[XX*)+ E[(XX*)?], (13)
where
Ay = A% and P, = E[{§§*)42].

Furthermore, from {8),

APA*=L(,—D,,. (14)

Combining (13) with (14) and arranging the result
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by way of A product yield :

Lo - AGPASF 20iL, Dy 1Y -ARALY .

+4{Li;, Dy} ADy+ E[{XX*}1?]

-

= _AZPQAQ'_ZD}“A:+E[‘(XX‘)I\?'] +2L||JA.’. (15)

If we define the spectral density matrix of the
proposed method as

Liog=2Ly%—Liy {16)

and combine with (15), we get :

L(Q:R=A2P2A2-+(2Dxla2_f[‘(xx‘ )AZ])‘ (17)
Now. (9) for the orthogonality of [16] is applied

to (17) by squaring each element of the directional-

vector in (6) [14]. that is

. ¢ i

D, =870 ( T wow®) al® ], (18)

k=1

where

a,1(8) =[1. expl —2j wg kys 1.

expl —2j wnkexa ),....expl —2) my ke 1] (19)

(a) Original data from {d) Auto-convolved data sequence
the sensor array ( 2nd-order data)
4 y
(b} 1st-order spectral (e) Spectral density matrix
density matrix for auto-convolved data

y
(c) Squaring each element )

of the 1st-order -
spectral density
matrix multiplied

by 2

{f) 2nd-order orthogonality
test

Fig 1. Block diagram for realization of the proposed
method.

and, v, k=1, 2....,¢, are the eigenvectors corre-
sponding to the eigenvalues of the covariance
lnix obtamed e onverse Fourer sransfoem
[15] of Ly in (17).

Fig, 1 shows the procedure of perorming the
proposed method DOA estimation, in the form of
block diagram.

We now describe the procedures, shown in Fig.
1, to carry out DOA estimation using the proposed
method in detail as follows :

(a)Obtain the received data from a sensor
array in the presence of background additive
noise (refer to (11).

(b)Get the spectral density matrix from the
received original data obtained in (a) (see
(8)).

(c)Square and then double each element value
of the spectral density matrix in (8).

{d)}On the other hand, produce the new data
sequences by auto-convolution of the original
data sequences taken from (a) (confer {9}).

{e) Obtain the spectral density matrix using the
auto-convolved data sequences of (d) (refer
to (12)).

(f) Finally, perform DOA estimation by applying
the spectral density matrix, which is obtained
in consequence of subtraction of the matrix
in (¢) from the one in {e), to (18) and (19).

Il. S/N Improvement of Proposed Method

In this section we compare and discuss the
performances of the MUSIC which is considered
as a benchmark for the subsequently developing
DOA estimation methods and the proposed method
described above, bhased on the theoretically
derived S/N.

For the relative comparison of the MUSIC and
the proposed method in terms of the S/N, consider
a deterministic source signal s{?) =4 exp{jot), ¢
=1, 2,...,N, with zero-sample mean and complex
stationary random noise x{#) with zero-mean and
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variance 2q,”. When the source signal and noise
are uncorrelated with each other, the S/N of the
MUSIC can be obtained as

{S/NImusic = /126.5). (20)

Considering a single source for simplicity, a received
signal with additive noise, i.e., »(£) =s{(2) + x({),
can be auto-convolved to obtain the new signal
for the proposed method :

r ) =r{t)Y Q{5
={s()+ (@ {s(t) +x()}
=s,(¢) + x,(8) + 2055 @ x(B)}, (21)

where
s(t) =5(8) ® s(¢) and x,(£) = x(¢#) ® x(¢).

For s(t) and x(#) to be independent, E,[ ».(f}],
where E,[-] denotes the sample mean through ¢
=1, 2...,2N=1, must be equal to zero. Therefore,
the variance of ».(¢) can be obtained as

VelrdY ) =E () (1))]

=E[s:()s* () )+ E[x ()2 (8) ]+ E[s:{B)x(8)]
+ Efx (OB ]+ 2E s ) s(t) @ x(2)}*]
+2E[{s(6) ® x(O)}x M) )+ 2E[{s (1) @ (1)}s*(8) ]
+2E[x()s(6) @ x()1*)

F4E{s(t) @ x(O)Hs(t) @ x(6)1* ],

Given that each odd moment of the zero-mean
process is zero and the independence of s{t) and x
{#), the remaining terms of the above equation
become :

ELrdt)r ()1 =E[s,()s*(£) )+ E[x,(£) 222 ]
HAE[{s() @ x(£)} {s() ® x(£) ). {22)

Thus the value of E.[{s(#) & x(£)} {s(t) ® x(1)}*}
in (22) is approximated in the finite discrete case
by

E4s(H) ® x(8)1 {s() ® x(£)1*]

SN
Y s(k) x(t—k) s*(m) x*(t—m)]. (23)
m=1

Note that x(#) takes the form as
x()=alt)+756(0), t=1,2.. . .N.

where
a(f) and b(f) are independent and real-valued ran-

dom processes.

If a(f) and #(¢) have the same distributions with
zero-mean and variance o,’, then
Elx(t)]=Ela(t) +j b() ] =0,

and E[ x(£)x*($)]=E[a¥(8) + b4t} ] =2 6,2.

Using those facts, (23) can be rewatten as follows :

1) When k=1,
Elis(6) @ x(H)} {s(8)y ® x(8)1*]

~E,[( Z]s(k) sHk)) (xlt—k)x*(¢—k)]
k=

N

= T (s(k) ")) ELx(t—k)x(t—k)]
k=1

~ {N A2 ((N/(2N-1)){20,2))
= (N2 44/(2N-1)) (26,2 ; (24)

it} Otherwise,

ESf{s() ® x(£)} {s(1) ® x(£)}*] =0, since all the
terms of the above equation EJ{s(8) ® x(#)} {s(#)
® x(#)}*] consist of odd moments of s(¢) and x(2),

The valuses of E[s{#)s*(f)) and EJlx{¢)x.*
(#}], are then obtained, one-by-one. The new
source signal s,(f) can be obtained by taking the
auto-convolution of the original source signal as

v

Sy =s(H) @ s) = T s(k) s(t—k).

k=1
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Since

58—
A" explyom) wheyid - L,
242 p_:s(p(j?m) when {=2.

(N=D A exp(/—1w)

N £ expl/ Nw)

(N=1) A expls (N+1)w)
(N=2) 2 exp(j (N+2)w)

when f=XN-1,
when =N,
when?=XN++1,
when f =N-+2,

At expl; 2N -1Dw) when ¢ =2N"—1,

0 otherwise,

where
s:.{#) has maximum value of magnitude at { = N.

The variance of s.(¢), ie., E[s,(£1s*(£)], is
obtained as

E.ls.(£)s,*(£)]

-1

S (I2N—1)) ¥ s(k)s* k)
1

k=

N
=(AYON-1) (2 (LK) -4
k=1

=(AYN-IN 2NN+ (2N +1)/6) ~NE}
={42N3+ N3N~ 1)), (25)

The variance of x.(¢), i.e., Elx,(#)x*(¢)], in (22)
can be also expressed as

Elx (x> (t)]

4

E[T T x(k) xlt—k) x*(m) x*(t—m)]
k=1 m=|

N1

=(1/{2N~-1)) ¥ x k) x. *(k), (26}
k=1

where

Then, (26) can be successfuily anaiyzed by voii-
sidering the following cases :

DWhenk#mandf=k+m,

Efx () xt)]

[

N
=E[¥

x(k) x*(m) x(m) x*(k)]
k &

m= 1. m#

#

Ay N

=(/eN=1NLE ¥ xk) x%k) x(m) x*(m)]

k= m=jm#k

= (/ZN=1)) Txlk) x @t T xlm) x*im)),
k=1 m: |, mek
(27)

and for large N,

N
Elx(tix*($)]1=20,"=(1/N) T x(m)x*(m), (28)

m=1
Thus, {27) can be rewritten as the following {29) :
E[x, (£ ()]
N
=(1f/(2N~1D 4o, N2 =3 x2(m) (x*{m))?}
m=1
={1/(2N~1)}4 6,° N*=2{K. + Do N} (29)
where
K. ={E[a'())/E[a?() ]}, (30)
Note that for x(#) =alt)+ 5 (¢}, £=1, 2.....N,

where a(?) and b{¢} are independent and real-valued
random processes,

Elx3())=E[(a(t) + jb($))?]
=E[ (&) —8() 4 7 2a(£)b(8) )
=0, (31)
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since a(f) and &({) are independent and have the
same distributions with zero-mean and variance o,°.

[n the same manner,
E[{x*())2]=0. (32}
Futhermore,

Elatt) (x4 ]

= E{lalt) + 7 BiE))2 {alt)— 7 6(1))7]

=E{at () ]+ E(b{() ] +2E[a3(D) JE[6%1))

=K ENa2(6) 1+ KE{bX )1+ 2E{aX(t) JE(B2UH) ]
=2K. a,'+2q,}

=2(K.+1)a,’. (33}

iNWhenk#mand{#k+m
Since (26) is composed of all odd moments and

each odd moment of a symmetrically distributed
Zero-mean process is zero, the result is

Elx(x*(1)]=0, (34)

ii1) When k=m,
Elx(H)x*(#)]

=E|

T =

lx(k)x‘(k)x(t—k)x‘(t—k)]

=[ k‘:_:l x(k)e (k) JELx(t—k)x*(1—k) ]

= (N2 (2N —1)) (46,1}, (35)
where

k+1<t<N+k

Now, adding (29), (34), and (35) yields :

ELx{t)x ()]
= (AN—K,—1)((2N o'} (2N —1)). (36)

When we define the S/N for the proposed method
as

LS/NTe = E,[s{) s 6) ) ELx,(£)x2(8)), (37)

the value in (24) causes an error in the S/N of
the proposed method. However, the value in (24)

2z

can be englected if 42« 24,° since, under this

condition,
EJ{s(t) @ x(1)} {s(€) ® x{)}*] « Elx (£ (£) ].

Therefore, from (25) and (36), the S/N of the
proposed method can be expressed as

[S/N) ={442N2+1)}/{66 (AN-K.~ 1)}, (38)

or, using expression of the [S/Nlyusic in (20}, we
have :

[S/N]; = ([S/N)music)42(2N + 1)) /304N~ K .~ 1)1,
(39)

Note that {39) always bocomes :
[S/N]./[S/Nlyusic = 1 (40)
as long as
[S/Nmysic = 134N —K.—1)}/{2(2N?+ 1), (41

which indicates that the proposed method provides
better resolution than the MUSIC so long as the
inequality in (41) is maintained,

For example, if both a{¢) and &{(¢) are Gaussian
random processes, then K.=3 from (30) and
thereby the minimum values of the [S/Nluusic
satisfying (40) can be obtained, with respect to
the number of sample data N, as in Table 1.

Table 1 demonstrates that the minimum value
of the [S/Nlyusic decreases as N increases, for
astisfying the improved S/N of the proposed
method compared to the $/N of the MUSIC,
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Table 1. Minimum [S/N]yysic for Gaussian random
noises 1n order to hold eq,{41).

N 1 Minimum { S/N[ e (dB |
I 10,42 1
Y -13.36 -
[ 128 16.33 T
256 1932
512 2237 -
10.24 -25,38 a

Even taking small & of 32, the proposed method
provides better S/N than the MUSIC, as {ong as
the S/N from the original data becomes larger
than approximately -10 dB, which practically
indicates very poor circumstances.

On the other hand, with fixed values of ¥ =
128,256 and 512, the graphs for the [S/N], are
obtained as a function of the [S/Nuusic (Fig, 2).
brom Fig, 2, we can easily see that the proposed
method provides better S/N than the MUSIC’s
S/N satisfying the minimum {S/Nluusic for N
given in Table 1.

120
IS/Nlg

{aB)
100

40

20

04

IS/N} yesic {dB]

Fig 2. |S/N]. expressed in terms of [S/Nlyusie
with ¥ = 128,256, and 512.

Fig. 3 shows the three graphs for the {S/NI
drawn in terms of .\, when the values of [S/N]
301 dB. 0 dB, and 3.01 dB.
respectively. As shown in the figure, all the

ainn, Are grven s

values of [S/N], continuously increase as N
becomes larger. Furthermore, Fig, 3 indicates
that the proposed method improves the S/N
regardless of  if the [S/N)yusic has the value of
0 dB or 3.01 dB, and that (S/N)/[S/Nluusic =1
holds as long as & = 8 if the {S/N]uusic has the
value of -3.01 dB. Overall the example described
so far represents that the proposed method offers
better performance than the MUSIC even in very

poor circumstances,

60
{S/Nlg
ldB]

—&— (S/N} amc=-3.01dB
— g (S/N) uc™0dB
—l (S/N) amc=3.010B

-20

[} 100 200
N

fFig 3. [S/N] expressed in terms of N, with [S/N]
MUSIC = -3.01 dB, 0 dB, and 3,01 dB.

IV. Conclusion

Different from various versions of DOA esti
mation methods based on the eigenstructure
algorithm, the key to proposed method is the use
of the new data sequence by auto-convolution of
the original received data on each sensor of the
array, where each auto-convolved data point
provides information on all the other data points
in correlation operations with a constant lag.
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Thus, the S/N for the new data sequence 1s
improved and thereby the proposed method can
be effectively used to accommodate troublesorne
cases such as closely located multiple sources,
limited number of sensors, andfor low S/N[14].

In this paper, not only the theoretical derivation
of the S/N for the proposed method that performs
high resclution DOA estimation even in poor cir-
cumstances described above, but also the conditions
for the proposed method to improve the S/N
compared to the MUSCIC have been made. Fur-
thermore, throughout a concrete example con-
sidering a practical point of view, the superior
performance of the proposed method to that of
the MUSIC has been discussed from S/N and
number of data points of view. It is therefore
expected that these efforts may lead to new
insight into realization of the proposed method
for high resolution DOA estimation.
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