The Journal of the Acoustical Society of Korea
- 제14권2E호
- /
- Pages.5-11
- /
- 1995
- /
- 1225-4428(pISSN)
신경 회로망을 사용한 비 파라메테 텍스춰 추출
Non-Parametric Texture Extraction using Neural Network
초록
본 연구에서는 화상에 있어서 패턴의 공간적인 특징을 추출하기위한 목적으로 신경회로망을 적용하는 방법을 제안하였다. 적용한 신경회로망은 3중의 구조를 가지며, 그 학습방법으로는 back-propagation 알고리즘을 사용하였다. 또한 이동이나 회전과 같은 패턴의 변위에 대응하기 위하여, 화상으로부터 co-occurrence matrix를 구하여, 신경회로망의 입력패턴으로 사용하였다. 제안한 방법을 평가하기 위하여 종래의 대표적방법인 화소의 spectral 정보를 이용한 최대유도법(maximum likelihood method)으로는 식별이 곤란한 시가지지역과 모래지역을 선정하여, 본 방법과 Haralick에 의하여 제안된 teture features를 이용하여 분류한 결과, texture features를 이용한 방법으로는 67%~89%의 식별률을 얻었음에 반하여, 본 연구에서 제안한 신경회로망을 사용한 방법으로는 80%~98%의 안정되고 높은 식별률을 얻었다.
In this paper, a method using a neural network was applied for the purpose of urilizing spatial features. The adopted model of neural network the three-layered architecture, and the training algorithm is the back-propagation algorithm. Co-occurrence matrix which is generated from original imge was used for imput pattern to the neural network in order to tolerate variations of patterns like rotation of displacement. Co-occurrence matrix is explained in appendix. To evaluate this method, classification was executed with this method and texture features method over the city area and sand area, which cannot be separated with the conventional method mentioned aboved. In the results of this method and texture features proposed by Haralick the method using texture features was separation rate of 67%~89%. On the contrary, the method using neural network proposed in this research was stable and high separation rate of 80%~98%.
키워드