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A Study on the Classification of Underwater Acoustic Signal
Using an Artificial Neural Network
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ABSTRACT

In this study, we examine the applicability of the classifier based on an artificial neural network { ANN) for the
low-frequency acoustic signal in shallow water environment. The estimations of the Doppler shift and frequency
spreading effect at 220 Hz reveal the frequency variation of less than 2 Hz with time, This small variation enables
the ANN-based classifier to identify signals using only tonal frequency information. The ANN consists of 4 layers,
and has 60 input processing elements (PEs) and ¢4 output PEs, respectively. When measured tonal signals in the fre-
quency 200-250 Hz are applied to the ANN-based classifier. the classifier can identify more than 67% of the signals

for instantaneous frame and more than 91% for averaged one over 5 frames.
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I. Introduction

Classification of underwater contacts from sonar
was mainly conducted by trained human operators by
listening the acoustic signal. But with the advent of
high speed computers, visual displays "have become
available to increase the auditory information, This
in trun has enabled sonar operators to process visual
and auditory information simultaneously. yielding fa-
ster reaction times and improving their interpret-
ations.'® The displays are very complex and require
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that potential sonar operators go through extensive
training as well as memory tests for visual displays
and auditory pitch, Moreover, as sensor technology
develops and the threat becomes increasingly sophis-
ticated, this task is becoming more and more diffi-
cult due to the increasing voiume and complexity of
data available for the processing. This gives rise to a
substantial increase in operator worklead although
many techniques concerning digital signal processing
guarantee the successful contacts,

In an attempt to solve these problems, an artificial
neural network {ANN) is one of the new, basically
different signal processing approaches that is cur-
rently receiving much attention for weapon applicat-
ions.4% An ANN technology attempts to mathmati-
cally and/or electrically model neurons and synapses,
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and then interconnect these models 1 architectures
sultabile for signal processing tasks,

in shallow water. however, an acoustic signal may
be distorted by the cnvironments through which it
propagates, That 1s, 1t inevitably undergoes the en-
ergy loss and scattering n the time domain due to
multipath propagation (or Doppler scattering in the
frequency domain). The spreads in frequency and
angle of an acoustic signal reflecting from a fixed
ocean bottom may exist in the presence of source and
receiver motion. Moreover, an acoustic signal may be
corrupted by background noise.*

In this paper, we exarmine the possibility of apply-
ing an ANN in classifying underwater acoustic signal
in shallow water environment, We employ the ANN
which 1s based on the backpropagation learning sche-
me to identify four different tones in the frequency
of 200-250 Hz, Although many other factors may be
considered in classifying signals by passive sonar,
tonal frequency information from narrow band pro-
cessing 18 still the most important one. We attempt
to estimate the number of frequency bins on which

most of the acoustic energy exists, The background
noise 15 normalized using the Order Truncate Aver-
age (OTA) scheme.” The ANN is trained with tonal
frequency information and then tested with the
measured data in shallow water, Finally, the ANN
results are compared with that of the so called “eye
integration” by humankind.

Il. Data Measurement and Analysis

Acoustic data to be applied to the ANN are spec-
trum levels with frequency. The data have been col-
lected in the Southeast Sea of Korea. where the water
depth is around 150 m and the bottom sediment
consists of sand, silt and clay. The sound source emit-
ting tones in the frequencies of 204.7, 216.0, 229.1,
and 240.4 Hz, was towed at around 10 kts and at 20 m
depth, The receiver was a horizontal line array ha-
ving 11 sensor elements and was installed on the sea
bottom, Signal arriving at a RF receiver is decoded
and recorded for further processing (Fig.1). Data
sampting rate in analog-to-digital conversion is 24.4
kHz and the frequency resolution of power spectrum
is 0.1875 Hz,

Figure 2 shows the procedure to identify the signal
using an ANN, The digitized data are transformed
into frequency domain by the discrete Fourier trans-
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Fig.2 Procedure to classify tonal signals using an ANN,

form (DFT) and then normalized by the OTA sche-
me. Normalization is the process of whitening the
background noise spectrum. The OTA normalizer
was developed in 1978 by Wolcin.” The following
steps describe the OTA technique: (1) The X bin
values in the %-th set of bins £ are ordered to form a
new sequence (¥y, Yz, Ya, ..., Yx), where ¥, is the
smallest and Y is the largest. (2} The sample me-
dian Yy is identified, and all bins having values gre-
ater than »Yy are excluded, A scale factor r is a
function of X, and it is approximately 1.4 for K=11,
Assume L bins are left after the exclusion process.
(3> The noise mean estimate u; is then obtained
using I remaining bins °

[

w=Y

r=1

Yy
T {1)

The OTA is proven to be appropriate when multiple
tones are present.®® The normalized power spectrum
levels are averaged over five frame steps to lower
the false alarm rate of the classifier. The spectrum
level information is applied to the ANN to identify



A Study on the Classification of Underwater Acoustic Signal Using and Artificial Neural Netwerk 59

the four signals.

In shallow water acoustic signals experience the
energy loss and the Doppler shift in the frequency
domain. Doppler shift can occur, in particular, due to
the effects of inner waves and currents.® Along with
these effects, random positional variations of source
and receiver are often of fundamental and dominant
importance in the high frequency. Hence, proper
number of frequency bins or bandwidths should be
estimated s¢ that most of the energy can be inciuded
within the selected range of bins,

The Doppler-shifted frequency f, of a transmitted
CW signal depends on the frequency f, emitted by
the source, the path geometry, as well as on the so-
urce and receiver velocities,® For one-way transmis-
sion, the shifted frequency can be given as follows ;

Fi_ 1+ (Vife)cos (p—20)
A 1-(Vife)cos g

(2)

where, |y=source velocity,
I, =receiver velocity,
¢ =bhottom slope,
@ = acoustic ray angle to the horizontal sur-
face,

¢ =sound speed.

The notations in the equation are shown in Fig.3.
If the velocities of a source and a recetver are very
small compared with the sound velocity, that is, ¥'s/¢
{<1 and I",/fe €1, the Eq.(2) may be approximated as

(fi=fo) _:A_fL

5 Jo
= (Vsfe) [cos o+ (V, /1 coslp—28)]

x (Vsfe)cos o+ (V. fc) cos (9 —26)
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Fig.3 One-way bottom-bounce propagation geometry.
s .source, r :receiver, Vs :source speed, Vr ! receiver
speed, §: bottom slope, ¢ :acoustic ray angle to hori-
zontal,

For ¢=60°, 1'.=10 kts, VV, =0 kts, ¢= 1500 m/s, and

f. =220 Hz, the frequency shift results in 0.377 Hz.
On the other hand, the expected energy return by

frequency spreading, /() can be expressed as'

A

:’(Q}f.-l_ dx | Slx, ) diQ-Qx yidy (1)

¢

V.\.\ X + Vw}'
c[x?+yl 4 PR

where, (' =

P R—x) _['.R_\-y
c[{R—x)+y?+ D12

Q= (f—f,)]f,, relative Doppler scaling,

S{x, y) =expected received energy per unit area,

MHQ—=Q'y=1for Q=0 and 0 otherwise,
s, Vs ==source velocities,
1w, Ve = receiver velocities,

D) = source-to-bottom depth,

Iy =receiver-to-bottom depth,

£ =horizontal range,

¥ =down-range, horizontal from source to re

ceiver,

¥ = Cross-range.

The frequency spreads, measured as the wia!:-
1/e value of each frequency spread curve, ncte. .
with rms slope and are symmetric with () for ~our. -
and receiver both moving in the same dircetio.
However, the symmetry with respect to the Dopplot
peak is lost at larger rms slope for source or receiver
being fixed. For an extreme case of bottom slope.
ms 15°, D=4 km, and R=22 km, the A¢ width 15
around 0,0046 for Vg =V =15 m/s. "’ But it is even
smaller for source being fixed. Even when we adopt
the extreme width, the resulting frequency spreading
may come to around 1.012 Hz at 220 Hz.

The source frequencies themselves have deviated
about 1 Hz from the tonal frequencies during the me
asurement, After all, to identify one signal using an
ANN, like the manner in spectrogram, a maximum
bandwidth of 2.8 Hz is required. Since the frequency
resolution of power spectrum is 0,1875 Hz, the num-
ber of frequency bins is 2.8/0.1875 or 15.

[L.. Application of an ANN

An ANN consists of many interconnected proces-
sing elements (PEs) which model the behavior of
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neurons, In its simplest form, a PE is a threshold
unit which accepts 4 number of inputs and produces
an output only 1if the sum of the inputs is greater
than an internal threshold. One of the most intere-
sting aspects of an ANN is its learning capability. An
ANN learns by adaptively changing the interconnect-
ion strengths between the PEs. In this way. a clas
sifier can be built net by prograrmming the network
but by presenting it with & number of training ex:
amples and allowing it to build up the discriminant
function automatically.

The updating of network weights with the back-
propagation algorithm is analogous to the process
used by the adaptive least mean square (LMS) fil-
ter.!! The algorithm computes an estimate of the
gradient of the mean square error with respect to the
weights of the system, and this information is used
to move the weights so that the error approaches a
minimum, It is important to note that a neural net-
work 1s a nonlinear device, typically with many local
minima. The existence of local minima eften makes it
difficult for the network to reach its global minimum
with unsupervised traimng, A derivation of the back-
propagation algorithm is now briefly presented.

Given x; as the input vector and wy as the weight
vector at time %, the output of the linear summation
of a single PE is given by :

Se=x ws (5)
and the output of the PE is:
ye=tanh (sg) (6)

The error here is defined as ex=dy— y¢ where d is
the desired signal at time 4.

The gradient of the mean square error with respect
to the weights is given by :

3E(ed)

dwg @

where E denotes the expected value. By eliminating
the expected value, we obtain a stochastic estimate
of the gradient :

def
R

resulting in the following weight update equation :

7
fey
I Wy

Wirl 7 We— f (8)
where u is the learning gain that controls the speed
of convergence, Taking the partial derivative we ob-
tain the following :

6e§ dey
SAT S
Fy 2 e Fym (9)
g —
-2 2 Ndp—y2)
dwy
., é
= -2 e Y& 2
awye

= =2 e Y Y&

A

where ¥ =
Y dss

Here, we have

. _ dtanh(s)

Ve d 5 (10

=1 —tanh?(s;)
=1~

and thus the weight update equation for a single PE
becomes :

Wit = we+2 perll—vi) % (1)

In a multilayer neural network, desired signals are
typically available only for the PEs in the output
layers. A general weight update equation for any PE
is given by Widrow and Lehr!? as:

Wr+1 = We+ 2 pu S X (12)

where & is called the square error derivative for the
particular PE, and x%; is the input vector for that PE.
For the output layer PEs, where desired signals are
available, & is obtained from Eq.(10) and is given by
Sr=ex{1—yi). For a PE not in the output layer & is
given by :

Sha=ehs tanh’(sfu) (13)
where 85,4 is the square error derivative at time & for

the m'* PE in the I* layer, sh., is the output of the
same PE at time &, and el is the backpropagated
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Fig.4 Input pattern for the ANN, A total of 60 frequency
bins are used to identify the four different signals
where each bin is 0,1875 Hz wide. The shaded bin
denotes the case when the SNR is greater than 2 dB

and thus has the value of 1.

error for that PE at time % The backpropagated er-
ror is given by :

ef,..,,=_}: 5:-:' Wim i —i. k (14)
i=1

where wir '~ « is the weight that connects the m
PE in the /* layer to the i#** PE in the (/+ 1) layer.
Thus the backpropagated error for a PE that is not
in the output layer is given by the sum of the squ-
ared error derivatives of the PEs in the following
layer, each scaled by the PE weight that connects
the PE being evaluated with the PE in the next
layer,

e }
ouT > 4 o

H2 > 30 @

H1 —> 60 ¢
IN —> 60 @

T Bias

Fig.5 The ANN structure to identify the four signals. The
input layer has 60 PEs, 15 PEs for each signal, The
two hidden layers have 60 and 30 PEs, respectively.
The output layer gives four results, each one having
the value of 0-1.

In this paper, a total of 60 input PEs (15 PEs for
each signal) are used as shown in Fig.4. In the fig-
ure, each frequency bin is 0.1875 Hz wide. The shad-
ed bins denote the cases when the normalized power
spectrum levels are greater than 2 dB and thus have
the value of 1. Other bins have the value of (. The
ANN is trained to identify the specified signal if all
of the 15 bins have the value of 1. The number of
possible combinations for the training data set is 2=
16.

Figure 5 shows the architecture of the ANN em-
ployed in this study. The ANN consists of 4 layers :
the input, the first hidden, the second hidden, and
the output. The output layer has four PEs which gen-
erate results ranging from 0 to 1. A threshold, to de-
cide whether the signal exists or not, is set t0 0.9. A

Table 1. Recalling test results for the training data set after
learning. In desired results, the specified signal is
set to 1 or 0 if all 15 frequency bins have value of
1 or 0.

Desired Results

Test Results

A B C D A B C D

1 1 1 1 0.994196 0.996318 0.993251 0(.994833
1 1 1 0 0.992100 0.994034 0,996587 0.009933
11 b 1 0.993457 0.996636 0.002019 0.994681
1 1 0 90 0.994753 0.994223 0.004292 0,008466
P01 1 0.996177 0.003140 0.994079 0.993911
1 01 0 0.993066 0.007473 0.996523 0.007453
I 0 0 1 0.993993 0.004589 0.003616 0.993069
0 1 0 90 0.004736 0.997693 0.005597 0.003175
01 1 0 0.006487 0.996652 0.997323 0.004240
0 1 1 1 0.006354 0.994660 0.995776 0.996483
00 1 0 0.003833 0.002336 0.998484 0.003669
0 0 1 1 0.002677 0.003671 0.993401 0.993925
¢ 0 0 0 0.005385 0.005165 0.005620 0.007464
0 0 0 1 0.007324 0.004031 0.005109 0.994566
01 0 1 0.004346 0.994162 0.005039 0.993477
1 0 0 0 0.990229 0.008383 0.003581 0.0(5308
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Fig.7 Spectrogram of the 7th receiving sensor. The bin
numbers corresponding to the four signals A, B, C,
and D are 8, 76, 142, and 206, respectively.

total of 155 PEs mcluding the bias PE are intercon-
nected in the ANN, The number of learning cycles is
100000 when the learning gain g, is set to 0.45. In the
learning, the ANN converges very fast and approac-
hes mean square error ( at the iteration number
100000 (Fig.6).

Table 1 shows the results for the training data set.
In the desired results, the specified signal is set to 1
or 0 if all 15 frequency bins have value of 1 or 0. It
can be shown that the ANN successfully identifies
the four signals after learning.

V. Results and Discussions

Figure 7 shows the spectrogram example of the 7th
receiving sensor. The instantaneous power spectrum
levels are displayed over 167 time steps and 220 fre
quency bins. The bins on which the four tones occur
are Bth, 76th, 142nd, and 206th, respectively. In the
figure, it can be shown that the frequency bin sprea-
ding is noticeable and it amounts to arcund 15 bins
(or 2.8 Hz) as estimated previously. At the begin-
ning of the spectrogram, it is not clear enough to
identify the signals, but it becomes better as the
time progresses, As a whole, the signals of A are the
strongest and therefore the easiest to identify, and
those of D are the weakest and therefore the most
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Fig.8 Classification results by the ANN for the four signals
of the 7th receiving sensor : {(a) instantaneous frame :
{b) five frames averaged,

Table 2. Classification results by the ANN for the four si-
gnals, A, B. C, and D.

Sensor | Instantaneous Five Time-step Averaged
No. A B C D A B C D
2 754 74.3 72.5 73.3| 988 975 96.3 92.0
3 80.8 80.2 70,7 749 988 988 963 96.9
4 76.0 82,6 76.0 7841 969 981 56.9 100.0
5 790 79.6 74.3 695! 981 963 97.5 96.3
6 1700 772 677 70.7] 981 969 938 96.3
7798 84.0 74.8 70,6] 98.6 98.7 962 Sl.1
3 790 77.2 75.4 725} 8988 981 97.5 988
9 91.0 86.8 80.2 856 100.0 981 97.5 99.4
10 83.8 80.2 79.6 814 | 100.0 951 957 97.5
11 83.7 83.8 81.4 80.8| 99.4 994 95 969
Avg, &7 80.6 75.3 7581 988 97.7 975 96.2
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difficult to identify,

The ANN-hased results corvosponding to the spec
trogram are shown in Fig 3. The ANN outputs iangue
from i to 1 aver the 167 nme steps, 1 o threshiold 1o
identifv a signal 1s set to 0.9, a verv large false alarm
vate s expected for the instantanecus ca-c 24 o
To towes the false aiarm rate, dn avetag: o - oo .
numoer of Ume steps udy De pel vl nmed, Uikate no
gives the results when the five steps averaged ot
matwn s applied 1o the ANN, Compared with the
results for an instantaneous case, thesc are much
more improved in a false alarm rate,

Table 2 summarizes the ANN results for 10 receiv:
ing sensors, The threshold for the decision is 0.9, For
the 7th sensor, the results show that they atre the
best with signal B and the worst with signal D o
both cases, This fact conincides with that in spectro-
gram. The minimum rate to identify the ¢ignal is Gl
1% for the averaged case while it is 67.7% for the in-
stantaneous case. The averaged case corresponds to
the “eye integration” by humankind. At a glance, we
can idenfity the four different (onals 1 the spectro-
gram.

In this paper. it is shown that the Doppler shift or
frequency spreading 1s small enough to he able to va
timate the suitable number of frequency bins on the
spectrograms, Also, it is shown that an ANN-hased
classifier can successtuliy identity the four signals
using only power spectrum informatior,

In real situations, however, there are many non-en
vironmental factors such as propellers and generators
that cause much tonal frequency vanation with time.
It is very common that the tonal frequency may be
severely shifted according to the status of sound gen-
erating equipments. For example, the low-frequency
spectra of cavitating surface ship propellers are us-
uatly dominated by tonal components at harmonics of
the ship propellers which generally operate at from
60 1o 350 rpm. The tundamental repetilion frequen
cies of this type of sound vary from 1 to 13 Hz and
the strongest components are generally the harmon-
ics between 10 and 70 Hz,

In addition, the signals may have much nose and
be intermittent. In this case, we can hardly classify
the signals any more from the tonal frequency infor-
mation. Other information. such as from broadhand
analysis and even from nen-acoustic sensors, must be
utilized to classifv the signals, To make full use of

data, the different senscr data processing systems

must share intormation to & much greater extent. To
achieve this, o s highly required the integration ot
veripheral knowledge ot the current situation dernived
fron: o vanety of sources al various levels tlnta
fusion? 4s well as the utilization of knowledge fron

we eexnetonse T ANN - based classifiert

Y . Summary

We attemipt o apply an ANN based classifier o
dentifving low frequency acoustic signals in shallow
water. The temporal frequency variation by the Dop
pler shift and spreading is estimated to be iess than 2
Hz at 220 Hz, and thiz enables an ANN based clus
sifier to be appheable using only tonal frequency in
formation in the low freoneney.

When the measured toral «ignals i the frequency
200-250 Hz are apphed 1 the ANN based classihier,

the classitier cos w0 more than 67 % of the sign
als for msrantancons case amd more than 91% 1o
averagec one: ovey ocar ateps e result s very
COMLLEAbIe o Th v 1 e Tene antegration”T o hu
mankimd.,
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