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ABSTRACT

In 나iis study, we examine the apphcability of the classifier based on an artificial neural network (ANN) for the 

low-frequency acoustic signal in shallow water environment. The estimations of the Doppler shift and frequency 

spreading effect at 220 Hz reveal the frequency variation of less than 2 Hz with time. This small variation enables 

the ANN-based classifier to identify signals using only tonal frequency information. The ANN consists of 4 layers, 

and has 60 input processing elements (PEs) and 4 output PEs, respectively. When measured tonal signals in the fre­

quency 200-250 Hz are applied to the ANN-based classifier, the classifier can identify more than 67% of the signals 

for instantaneous frame and more than 91% for averaged one over 5 frames.

요 약

본 연구에서는 천해환경에서 저주파 음향신호의 신경회로망에 기초한 식별시스템 적용 가능성을 살펴 본다■. 220 Hz 주파 

수에서 도플러 변이와 주파수 확산 효과를 추정한 결과 시산에 따라서 2 Hz 이하의 변화를 보인다. 이러한 주파수의 작은 변 

화는 신경회로망에 기초한 식별시스템이 단지 토널 주파수 정보만으로도 신호의 식별을 가능하게 한다. 신경회로망은 모두 

4개의 층으로 이뤄져 있으며, 입력과 출력 처리요소는 각각 6()개와 4개로 구성되어 있다. 주파수 200-250 Hz 대역에서 실측 

한 토널 신호를 신경회로망에 기초한 식별시스템에 입력시킨 결과 순간적인 프레임의 경우에 대해서는 67% 이상, 그리고 

연속되는 5개의 프레임을 평균한 경우에 대해서는亍 91% 이상의 신호를 식별할 수 있다.

I ・ Introduction

Classification of underwater contacts from sonar 

was mainly conducted by trained human operators by 

listening the acoustic signal. But with the advent of 

high speed computers, visual displays 'have become 

available to increase the auditory information. This 

in trun has enabled sonar operators to process visual 

and auditory information simultaneously, yielding fa­

ster reaction times and improving their interpret­

ations.1 3 The displays are very complex and require 

that potential sonar operators go through extensive 

training as well as memory tests for visual displays 

and auditory pitch. Moreover, as sensor technology 

develops and the threat becomes increasingly sophis­

ticated, this task is becoming more and more diffi­

cult due to the increasing volume and complexity of 

data available for the processing. This gives rise to a 

substantial increase in operator workload although 

many techniques concerning digital signal processing 

guarantee the successful contacts.

In an attempt to solve these problems, an artificial 

neural network (ANN) is one of the new, basically 

different signal processing approaches that is cur­

rently receiving much attention for weapon applicat­

ions. 45 An ANN technology attempts to mathmati- 

cally and/or electrically model neurons and synapses. 
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and then intcrconiiect these models in architectures 

suitabile for signal processing tasks.

In shallow water, however, an acoustic signal may 

be distorted by the environments through which it 

propagates. That is, it inevitably undergoes the en­

ergy loss and scattering in the time domain due to 

multipath propagation (or Doppler scattering in the 

frequency domain). The spreads in frequency and 

angle of an acoustic signal reflecting from a fixed 

ocean bottom may exist in the presence of source and 

receiver motion. Moreover, an acoustic signal may be 

corrupted by background noise.(i

In this paper, we examine the possibility of apply­

ing an ANN in classifying underwater acoustic signal 

in shallow water environment. We employ the ANN 

which is based on the backpropagation learning sche- 

nie to identify four different tones in the frequency 

of 200-250 Hz. Although many other factors may be 

considered in classifying signals by passive sonar, 

tonal frequency information from narrow band pro­

cessing is still the most important one. We attempt 

to estimate the number of frequency bins on which 

most of the acoustic energy exists. The background 

noise is normalized using the Order Truncate Aver­

age (OTA) scheme.7 The ANN is trained with tonal 

frequency information and then tested with the 

measured data in shallow water. Finally, the ANN 

results are compared with that of the so called “eye 

integration" by humankind.

form (DFT) and 나is normalized by the OTA sche­

me. Normalization is the process of whitening the 

background noise spectrum. The OTA normalizer 

was developed in 1978 by Wolcin.7 The following 

steps describe the OTA technique : (1) The K bin 

values in the 为-th set of bins d are ordered to form a 

new sequence (Vi, Y2, Y3.......E, where Yi is the

smallest and Yk is the largest. (2) The sample me­

dian Y.w is identified, and all bins having values gre­

ater than rV.w are excluded. A scale factor r is a 

function of K, and it is approximately 1.4 for K= 11. 

Assume L bins are left after the exclusion process. 

(3) The noise mean estimate 催 is then obtained 

using L remaining bins :

i. Y-
供=E ~r ⑴

< L

The OTA is proven to be appropriate when multiple 

tones are present.8 9 The normalized power spectrum 

levels are averaged over five frame steps to lower 

the false alarm rate of the classifier. The spectrum 

level information is applied to the ANN to identify

II. Data Measurement and Analysis

Ac이istic data to be applied to the ANN are spec­

trum levels with frequency. The data have been col­

lected in the Southeast Sea of Korea, where the water 

depth is around 150 m and the bottom sediment 

consists of sand, silt and clay. The sound source emit­

ting tones in the frequencies of 204.7, 216.0, 229.1, 

and 240.4 Hz, was towed at around 10 kts and at 20 m 

depth. The receiver was a horizontal line array ha­

ving 11 sensor elements and was installed on the sea 

bottom. Signal arriving at a RF receiver is decoded 

and recorded for further processing (Fig.l). Data 

sampling rate in analog-to-digital conversion is 24.4 

kHz and the frequency resolution of power spectrum 

is 0.1875 Hz.

Figure 2 shows the procedure to identify the signal 

using an ANN. The digitized data are transformed 

into frequency domain by the discrete Fourier trans- 

Fig.1 Signal flow from a RF receiver to digital output.

Noise Normalization
(OTA)

'Power Spectrum

Fig.2 Procedure to classify tonal signals using an ANN.
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the four signals.

In shallow water acoustic signals experience the 

energy loss and the Doppler shift in the frequency 

domain. Doppler shift can occur, in particular, due to 

the effects of inner waves and currents.6 Along with 

these effects, random positional variations of source 

and receiver are often of fundamental and dominant 

importance in the high frequency. Hence, proper 

number of frequency bins or band widths should be 

estimated so that most of the energy can be included 

within the selected range of bins.

The Doppler-shifted frequency of a transmitted 

CW signal depends on the frequency f0 emitted by 

the source, the path geometry, as well as on the so­

urce and receiver velocities.6 For one-way transmis­

sion, the shifted frequency can be given as follows :

A l+(F”c)cos (甲—对) 

f0 l-(Vs/c)cos<p

where, resource velocity,

Vr = receiver velocity, 

0 —bottom slope, 

(P = acoustic ray angle to the horizontal sur­

face,

c = sound speed.

The notations m the equation are shown in Fig.3. 

If the velocities of a source and a receiver are very 

small compared with the sound velocity, that is, Vs/c 

<< 1 and 匕/c《1, the Eq.⑵ may be approximated as

C f為 = 스'}. r (Vs/c) cos(p + (Vr/c) cos ((p~26)
Jo Jo

=(Vs/c) [ cos+ (匕/KJ COS 0—2 0)]

Fig.3 One-way bottom-bounce propagation geometry.

s : source, r : receiver, Vs : source speed, Vr : receiver 

speed, 6 : bottom slope, : acoustic ray angle to hori- 

zontal.

For <p = 60°,叭=10 kts, Vr = 0 kts, c = 1500 m/s, and 

f0 220 Hz, the frequency shift results in 0.377 Hz.

On the other hand, the expected energy return by 

frequency spreading, I{Q) can be expressed as10

= | dx J f(x, y) dlQ-Q{x. y) ] dy (4) 

where,(丿=云頌而两3可讶

______ V
——X)2 + j，2 + d：]1/2

()= (f — f0)/f0, r이ative Doppler scaling,

/(x, y) = expected received energy per unit area, 

3(。—。’)= 1 for Q=Q\ and 0 otherwise,

【'w,= source v이ocities,

I 'rx , I"、receiver velocities,

D = source-to-bottom dep나i,

T)i = receiver-to-bottom depth,

R = horizontal range,

x = down-range, horizontal from source to re 

ceiver,

y = cross-range.

The frequency spreads, measured as the widt}> 

1/e value of each frequency spread curve, mciw；- - 

with rms slope and are symmetric with for wun 

and receiver both moving in the same direct 

However, the symmetry with respect to the Dopplui 

peak is lost at larger rms slope for source or receiver 

being fixed. For an extreme case of bott이n slope, 

rms 15°, D = 4 km, and R = 22 km, the 乂 width is 

around 0,0046 for 卩砥=2、= 15 m/s.10 But it is even 

smaller for source being fixed. Even when we adopt 

the extreme width, the resulting frequency spreading 

may come to around 1.012 Hz at 220 Hz.

The source frequencies themselves h거ve deviated 

about 1 Hz from the tonal frequencies during the me 

asurement. After all, to identify one signal 니sing an 

ANN, like the manner in spectrogram, a maximum 

bandwidth of 2.8 Hz is required. Since the frequency 

resolution of power spectrum is 0.1875 Hz, the num­

ber of frequency bins is 2.8/0.1875 or 15.

ID. Application of an ANN

An ANN consists of many interconnected proces­

sing elements (PEs) which model the behavior of 
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neurons. In its simplest form, a PE is a threshold 

unit which accepts a number of inputs and produces 

an output only if the sum of the inputs is greater 

than an internal threshold. One of the most intere 

sting aspects of an ANN is its learning capability. An 

ANN learns by adaptively changing the interconnect­

ion strengths between the PEs. In this way, a clas 

sifier can be built not by programming the network 

but by presenting it with a number of training ex­

amples and allowing it to build up the discriminant 

function automatically.

The updating of network weights with the back- 

propagation algorithm is analogous to the process 

used by the adaptive least mean square (LMS) fil­

ter.11 The algorithm competes an estimate of the 

gradient of the mean square error with respect to the 

weights of the system, and this information is used 

to move the weights so that the error approaches a 

minimum. It is important to note that a neural net­

work is a nonlinear device, typically with many local 

minima. The existence of local minima often makes it 

difficult for the network to reach its global minimum 

with unsupervised training. A derivation of the back- 

propagation algorithm is now briefly presented.

Given Xk as the input vector and Wk as the weight 

vector at time k, the output of the linear summation 

of a single PE is given by :

wk (5)

and the output of the PE is :

>^ = tanh (%) (6)

The error here is defined as 钦=《&一必 where dk is 

the desired signal at time k.

The gradient of the mean square error with respect 

to the weights is given by :

쯜性 ⑺
dwk

where E denotes the expected value. By eliminating 

the expected value, we obtain a stochastic estimate 

of the gradient :

del 

dWk

resulting in the following weight update equation :

SL 欧 3* (8)

where 卩 is the learning gain that controls the speed 

of convergence. Taking the partial derivative we ob­

tain the following :

技 = 2 x & 아

2 Wk a Wk
(9)

=2 ek
dWk

=-2 ek
膈 

du)k
y“

=一2 ek y'k xk

where = £쏘

dsk

Here, we have

， dta 가i(sQ
y k =--- 5----- (10)

d sk

=l-tanh2(s^)

=l~yl

and thus the weight update equation for a single PE 

becomes :

Wk+i =卯论 + 2 卩 xk (11)

In a multilayer neural network, desired signals are 

typically available only for the PEs in the output 

layers. A general weight update equation for any PE 

is given by Widrow and Lehr12 as :

Wk + i = w^ + 2 卩 dk xk (12)

where 臨 is called the square error derivative for the 

particular PE, and Xk is the input vector for that PE. 

For the output layer PEs, where desired signals are 

available, & is obtained from Eq. (10) and is given by

= For a PE not in the output layer 讯 is

given by11:

甘心=&牝 tanh'(s>) (13)

where 孩为 is the square error derivative at time k for 

the mth PE in the Ith layer, s> is the output of the 

same PE at time k, and e^k is the backpropagated
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Signal A Signal B Signal C

Frequency Bin

Signal D

Fig.4 Input pattern for the ANN. A total of 60 frequency 

bins are used to identify the four different signals 

where each bin is 0.1875 Hz wide. The shaded bin 

denotes the case when the SNR is greater than 2 dB 

and thus has the value of 1.

error for that PE at time k. The backpropagated er^ 

ror is given by :

。，財=£ 8i, * l) — i, k
i= 1

(14)

where wit，—, k is the weight that connects the mth 

PE in 나le Ith layer to 나ith PE in the (/+1" layer. 

Thus the backpropagated error for a PE that is not 

in the output layer is given by the sum of the squ­

ared error derivatives of the PEs in the following 

layer, each scaled by the PE weight that connects 

the PE being evaluated with the PE in the next 

layer.

Fig.5 The ANN structure to identify the four signals. The 

input layer has 60 PEs, 15 PEs for each signal. The 

two hidden layers have 60 and 30 PEs, respectively. 

The output layer gives four results, each one having 

the value of 0-1.

In this paper, a total of 60 input PEs (15 PEs for 

each signal) are used as shown in Fig.4. In the fig­

ure, each frequency bin is 0.1875 Hz wide. The shad­

ed bins denote the cases when the normalized power 

spectrum levels are greater than 2 dB and thus have 

the value of 1. Other bins have the value of 0. The 

ANN is trained to identify the specified signal if all 

of the 15 bins have the value of 1. The number of 

possible combinations for the training data set is 24 = 

16.

Figure 5 shows the architecture of the ANN em­

ployed in this study. The ANN consists of 4 layers : 

the input, the first hidden, the second hidden, and 

the output. The output layer has four PEs which gen­

erate results ranging from 0 to 1. A threshold, to de­

cide whether the signal exists or not, is set to 0.9. A

Table 1. Recalling test results for the training data set after 

learning. In desired results, the specified signal is 

set to 1 or 0 if all 15 frequency bins have value of 

1 or 0.

Desired Results Test Results

A B c D A B C D
1 1 1 1 0.994196 0.996318 0.993251 0.994833
1 1 1 0 0.992100 0.994034 0.996587 0.009933
1 1 0 1 0.993457 0.996636 0.002019 0.994681
1 1 0 0 0.994753 0.994223 0.004292 0.008466
1 0 1 1 0.996177 0.003140 0.994079 0.993911
1 0 1 0 0.993066 0.007473 0.996523 0.007453
1 0 0 1 0.993993 0.004589 0.003616 0.993069
0 1 0 0 0.004736 0.997693 0.005597 0.003175
0 1 1 0 0.005487 0.996652 0.997323 0.004240
0 1 1 1 0.005354 0.994660 0.995776 0.996483
0 0 1 0 0.003833 0.002336 0.998484 0.003669
0 0 1 1 0.002677 0.003671 0.993401 0.993925
0 0 0 0 0.005385 0,005165 0.0(b620 0.007464
0 0 0 1 0.007324 0.004031 0.005109 0.994566
0 1 0 1 0.004346 0.994162 0.005039 0.993477
1 0 0 0 0.990229 0.008383 0.003581 0.005308
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Fig.6 Mean square error with the iteration number in learn­

ing.

A B C

Iv. Results and Discussions

Figure 7 shows the spectrogram example of the 7th 

receiving sensor. The instantaneous power spectrum 

}ev사s are displayed over 167 time steps and 220 fre 

quency bins. The bins on which the four tones occur 

are 8th, 76th, 142nd, and 206th, respectively. In the 

figure, it can be shown that the frequency bin sprea­

ding is noticeable and it amounts to around 15 bins 

(or 2.8 Hz) as estimated previo니sly. At the begin­

ning of the spectrogram, it is not clear enough to 

identify the signals, but it becomes better as the 

time progresses. As a whole, the signals of A are the 

strongest and therefore the easiest to identify, and 

those of D are the weakest and therefore the most

t Time (Frame) Speclmm Level (dB) Frequency (Bin)

____ . .______ ___________________________ _
，：顷mF； : 1.7/ctai I !

3 04e+0i 7.79e*00

Fig.7 Spectrogram of the 7th receiving sensor. The bin 

numbers corresponding to the four signals A, B, C, 

and D are 8, 76, 142, and 206, respectively.

total of 155 PEs including the bias PE are intercom 

nected in the ANN. The number of learning cycles is 

100000 when the learning gain 卩，is set to 0.45. In the 

learning, the ANN converges very fast and approac­

hes mean square error 0 at the iteration number 

100000 (Fig.6).

Table 1 shows 난】e results for the training data set. 

In the desired results, the specified signal is set to 1 

or 0 if all 15 frequency bins have value of 1 or 0. It 

can be shown that the ANN successfully identifies 

the four signals after learning.

1

0.8

0.6

0.4

0.2

0
1 21 41 61 81 101 121 141 161

Time Sequence

Fig.8 Classification results by the ANN for the four signals 

of the 7th receiving sensor : (a) instantaneous frame : 

(b) five frames averaged.

gnals, A, B, C, and D.

Table 2. Classification results by the ANN for the four si­

Sensor 

No.

Instantaneous Five Time-step Averaged

A B C D A B C D

2 75.4 74.3 72.5 73.3 98.8 97.5 96.3 92.0

3 80.8 80.2 70.7 74.9 98.8 98.8 96.3 96.9

4 76.0 82.6 76.0 78.4 96.9 98.1 96.9 100.0

5 79.0 79.6 74.3 69.5 98.1 96.3 97.5 96.3

6 79.0 77.2 67.7 70.7 98.1 96.9 93.8 96.3

7 79.8 84.0 74.8 70.6 98.6 98.7 96.2 91.1

8 79.0 77.2 75.4 72.5 98.8 98.1 97.5 98.8

9 91.0 86.8 80.2 85.6 100.0 98.1 97.5 99.4

10 83.8 80.2 79.6 81.4 100.0 95.1 95.7 97.5

11 83.2 83.8 81.4 80.8 99.4 99.4 97.5 96.9

Avg. 80.7 80.6 75.3 75.8 98.8 97.7 97.5 96.2
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difficult to identify.

The ANN-based resets corresponding to the spec 

trogr^ini <ire shown in Fig,X. The ANN outputs rnn^c 

from 0 to 1 over the 1()7 time steps. If a threshold to 

identify a signal is set to 0.9. a very large false a hi rm 

rate is e.x^x?('ted. for the instantaneous ca^'■ ‘ F’u •«； 

To iowei the false alarm rate, an aveiag；电 >•.(.:，， 

number of rline steps niay be p비fuiiiRci. rc ci 

gives the results when the five steps averaged infor­

mation is applied to the ANN. Compareci with 나此、 

results for an instantaneous case, these are much 

more improved m a false alarm rate.

Table 2 summarizes the ANN results for 10 receiv­

ing sensors. The threshold for the decision is ().9. For 

the 7th sensor, the results show that they are the 

best with signal B and the worst with signal D m 

both cases. This fact conincides with that in spectro­

gram. The minimum rate to identify the signal is 91. 

1% for the averaged case while it is 67.7"% for the m- 

stantaneo니s case. The averaged case corresponds to 

the Meye integration*'  by humankind. At a glance, we 

can idenfity the four different tonals in the spectro­

gram.

In this paper, it is shown that the Doppler shift or 

frequency spreading is small enough to be abitj to es 

timate the suitable number of frequency bins on the 

spectrograms. Also, it. is 나lown that an ANN-based 

classifier can successfully identify the tour signals 

using only power spectrum information.

In real situations, however, there yre many non-en 

vironmental factors such as propellers and generators 

that cause much tonal frequency variation with time. 

It is very common that the tonal frequency may be 

severely shifted according to the status of sound gen­

erating equipments. For example, the low-frequency 

spectra of cavitating surface ship propellers are us­

ually dominated by tonal components at harmonics of 

the ship propellers which generally operate at irom 

60 to 350 rpm. The fundamental rcpetitioii frequen 

cies of this type of sound vary from 1 to 18 Hz and 

the strongest components are generally the harmon­

ics between 10 and 70 Hz.

In addition, the signals may have much noise and 

be intermittent. In this case, we can hardly classify 

the signals any more from the tonal frequency infor­

mation. Other information, such as from broadband 

analysis and even from non acoustic sensors, must be 

니tilized to classify the signals, fo make full use of 

datj, the different sensor data processing systems 

musr share information to 서 much greater extent. To 

achieve this. it. is highly required 나：te integration of 

;x-'ripherai kn(Aviedge of the current situation der ivecl 

from d x'ariet y of sources at various levels ' -lata 

fusion I as well 서s the 비Hhzahon of knowledge from 

exnf^jence( ANN-based classifier),

\ . Summary

We attempt to apply an ANN based classifier m 

identifying low frequency acoustic signals in shallow 

water. The temporal frequency variation by the Dop 

pier shift and spreading is estimated to be less than ? 

Hz at 220 Hz, and this enables an ANN based das 

sitier to be applicable using only tonal frequency m 

fonnation in the low tr(?uucnc\\

When the measured ton;.c signals m the frequency 

200-25() Hz <ire apphr-!.3 to the .八NN based classifier, 

the classifier can ： of the sign

als for insrantaricoiis and more than \)\°o for 

averaged one ovct . - 1 'i riis result is verv

comparable E \ riat E u■ < - mtegrat ion'' by hu 

mankind.
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