
PHDCM : Efficient Compression of Hangul Text in Parallel

PHDCM : 병렬 컴퓨터에서 한글 텍스트의 효율적인 축약

Yong Sik Min*

민 용- 식 *

*호서대학교 전자계산학과

접수일자 : 1995년 5월 4일

ABSTRACT

This paper describes an efficient coding method for Korean characters using a three-state transition graph. To。니r

knowledge, this is the first achievement of its kind. This new method, called the Parallel Hangul Dynamic Coding

Method (PH DCM). compresses about 3.5 bits per a Korean character, which is more than 1 bit shorter than the con­

ventional codes introduced thus far to achieve extensive code compression. When we ran the method on a MasPar

machine, which is on S1MD SM (EREW PRAM)., it achieved a 49.314-fold speedup with 64 processors having 1()

million Korean 사laracters.

요 약

杉"、Q 3시 시 싱다I의 진이 二l래프들 이용해서, 병릴 컴퓨터인 MasPar에 적합한 한글에 대한 효율적인 누호화를 제시

하卫사 한다. 눈 切壬에시 제시한 PHDCM(Parallel Hangul Dynamic Coding Method)의 방법을 이용한 경우에 한글 한

음질당 약 3.5비匸이 상의 촉약이 升능함을 业였다「丄리고 기존의 방법나 비m해 볼때 1비드이상의 축약이 사等함도 보였匸｝.

圧한 익」천\卜자의 한，\号 이용해서, 병릴 컴昔터인 MasPar에

(Speedup)은 49.314임을 H였다.

1. Introd니ction

Because of rapid progress in data communications,

we are able to acquire the information we need with

ease. Although the parallel computer has made it pos­

sible to receive/transmit large volumes of data eas­

ily, it is necessary, nonetheless, to transmit only a

minimal amount of data bits. In particular, in the case

of Hangul, (the Korean characters), we constructed

a device which processes more efficient information

if used for its own special function. Even though most

people studied the mechanism and the construction

of HanguFs architecture, we need to minimize the

length of bits in Hangul.

This paper suggests a parallel data compression

method that applies to Hangul. Using a p걶i■기lei ma­

chine such as the MasPar computer, which is on

EREW-PRAM, we developed the Parallel Hangul

프모세서 64새를 이용하여 실제 실행을시겼을때의 가속도

Dynamic Coding Method(PHDCM), which minimizes

the bits, compared with any other conventional me­

thod. We used the dynamic Huffman code and our an

alysis of Hangul characteristics to develop a tri-state

transition graph that greatly improves the efficiency

of data compression for the Hangul text. When the

PHDCM was implemented on a MasPar machine, it

achieved a 49.314-fold speedup using 64-processors

having 10 million Korean characters.

II. The Characteristics of Hangul

To develop our method, we studied data-compres-

sion methods that minimize the bits in sending chara­

cters and then worked to improve the transmission

speed of the data [2, 5, 6, 7].

One of the methods is the bit mapping technique,

which has a great compression effect when there are

many spaces in the source symbol stream. The bit-

mapping technique works as follows. In the source

PHEXDM : Efficient Compression of Hangul Text in Parall이 51

symbol stream S = s】，s2, sqafter determining

the total number of all symbols, we created a one-

上)yte bit map zone part. If the so니rce symbol is a

blank, the bit-map zone corresponds to 0 ； otherwise,

it corresponds to 1. Next, we created the EBCDIC

with the right side of the bit-map zone. We proce­

eded with this method until the last symbol. Tn the

source symbol stream S = s2. sq f, if s(1 is not

the last 8th symbol, U.e., q 尹 X*i, where i 2 1 and i is

an integer), the remaining part of the bit map zone is

regarded as blanks. We represented the average

length of code, such as source symbol S = 1 ，s：_>,....

sq 1, as follows :

L = £p(*I(sD,

where p(sj is the probabifity of symbol si and where

I(sj) obtains an amount of information equal to

I(s,) =log2 —7— bits.
p(sj

The average amount of information per source sym­

bol is called the entropy H(s). It is as follows :

H(s)=三 p(sD log? ' bits :

p(s,)

that is, H(s) log2 q(q：the number of scarce sym­

bol). However, since I (sj has to be an integer, the

average length of code for an arbitary symbol S, is as

follows :

H(S)mI(s")〈H(S) + L

The bit-mapping method deals with fixed-length

codes. Next, we consider rhe compact binary code me­

thod, whicn de시s with the variable code lengths of

different symbols. In this method, the source symbol

that ocniis (,'^enf v in the text represents a long

code length whereas the symbol that occurs fre­

quently represents a short code length. The binary

compact code method compresses the data to 58% of

its original length. This method, however, has a ma­

jor disadvantage. If the so니心 symbols have many

blanks, or there are many symbols in the text that

occur frequently, this method requires longer code

lengths in total. Despite this shortcoming, the binary

compact code technique is the best [2].

In order to design the shortest code of entropy, we

adopted the variable length code. We found fre­

quency with which each Hangul symbol apperars in

the text, and then developed a compact code, which

has a different average length of codes.

In the case of Hangul, we had to consider at least

24 states since we were using Hangul's 24 basic chara

cters. There is no tn stale conditional probability

that treats one symbol with Chosor頂(initial symbol)

pair consonant, double-vowel and Jongsongtfmal sym-

tx)l) double-consonant. Also, we can use the gr서ph

such as in Fig. 1 I 6], thus we have to achieve the ef­

ficient code.

Chosong

vowel
(21 symbols)

Jongsono consonant
(27 symbols + null)

Chosong consonant
(19 symbols)

4-
I
I

_____I
start state

Fig. 1 Tri State transition graph

III. Par히I이 Hang니 Coding Method

To begin with, let us think about the sequential

dynamic compact method as follows. Given non-nega

tive weights(wi. w?........ wj. we can use the w이L

known algorithm of Huffman's code to construct a bi­

nary tree with n external nodes and n-1 internal

nodes, where the external nodes are labeled with we­

ights (wi, w2, wn) in increasing/decreasing order.

Huffman's tree has the minimum value of Wi 1)+... +

Wnk over all such binary trees, where 13 is the level

at which wj occurs in the tree. Binary trees with n

external nodes are in one-to-one correspondence with

sets of n strings or {(), 1 L For example, the binary

tree in Fig. 2 corresponds to the minimal code {0, 10,

110, 111}. In Fig. 2, Huffman's method combines the

two smallest weights w1 and Wj(the characters that

have the lowest probabilities to appear), then repl­

aces them with their sum w,+wJt and repeats this pro­

cess until only one weight is left. In this situation(see

Fig. 3), there is no way to distinguish weight 6 asso­

ciated with symbol A from weight 6 associated with

symbol C and D. This procedure, therefore, may form

two different trees (Fig. 2 and Fig. 3), depending

upon where the weight 6 that is associated with *2 +

52 The Journal of 나le Acoustical Society of Korea, Vol. 14. No. 2E (1995)

1 = 6' is placed. Both trees afe optimum for the given

weights, since

6x 1+5M + 4 x3+2x3= 2x4 + 2x2 + 5x2 + 6x2.

We call this method a dynamic compact code [1].

This procedure reforms Huffman's tree dynamically

in order to reduce the height of 나le tree. If weight 6

associated with A increases to 7, Fig, 2 is better :

but, if weight 2 associated with D increases to 3, Fig.

3 is better. In the average case, however. Fig. 3 is

better even though it has some advantages and dis­

advantages [1],

Fig. 3 Dynamic tree

To construct the Huffman tree, we must complete

several steps. First, we investigate the probabilities

of each symbol in the context in order for it to corre­

spond to the character. This exercise proves that the

statistical data of 1,150 Korean characters from arbit-

ary text is suitable for this purpose.

Given the data struct니re above, it is not difficult

to design pseudo-algorithms of the binary code tree

as follows.

procedure binarycodetree(float p)

/* the source S with symbols ■； Si, S?, Sq ' and

symbol probabilities ! Pi, P2,…，Pq! */

begin

(1) Let the symbols (except blank symbol) be or­

dered so that

Pi MPq ...乏 Pq

(2) We assigned the words 0 and 1 to the last se­

quence

(3) Combine the last two symbols of S into one

symbol

(4) Search back from the last sequence to the orig­

inal sequence through the reduced sources

(5) Repeat (2)-(4) until there left only two sym­

bols codes

end

The total time for the procedure binarycodetree

requires O(n log n) to construct the binary code tree.

Step 1 requires O(n log n), which is the time com­

plexity of the best sorting algori나im such as Quick­

sort or Mergesort [3], Step 2 requires O(log n),

which constructs the tree. Step 3 takes a constant

time : and Step 4 takes 0(1), where 1 is 나】。level of

the tree.

We construct a dynamic Huffman tree from the bi­

nary code tree as follows [1],

procedure dynamictree

begin

(1) Represent a binary code tree with weights in

each symbol

(2) Maintain a linear list of symbols, in nodecrea­

sing order by weight

(3) Find the last symbol in this linear list that has

the same weight as a given symbol

(4) Interchange two subtrees of the same weights

(5) Increase the weight of the last node in some

block by unity

(6) Represent the correspondence between letters

and external symbols

end

This procedure requires O(n) ; that is, a binary

code tree is constructed in steps 1 and 2 in the same

PHDCM : Efficient Compression of Hangul Text in Parallel 53

manner as for the above procedure binarycodetree.

Step 3 takes O(iog n), which traverses the tree.

Steps 4 and 5 require 0(1), which updates an element

at level 1 of the tree and step 6 requires 0(n). Toge

tner, the steps require an overall 0(n) time.

Next, we describe 나parallel me나iod referred tu

earlier as 나le Parallel Hangul Dynamic Coding Me-

thod(PHDCM). PHDCM has three phases which com­

press the source symbols. In the first phase, we con­

struct 나冷 binary code tree from raw source symbols,

each of which has a probability. Before constructing

the binary code tree, we consider the number of

processors that are going to be used on the machine.

In this situation, there are three cases. P, the num­

ber of processors, is less than, equal to, or greater

나lan the number of symbols at level 1, which con­

tains ei나ler all the symbols or part of the symbols.

If P is greater than or equal to the number of sym­

bols at level 1, then each processor at level i is con

nected to a single parent processor at level i-1 and to

each of its two child processors at level i + 1, except

for 比e root processor at level 0(which has no par­

ent) and the leaf processor at level d-1 (which has no

children). If P is less than the number of symbols at

level 1, then each processor at level i can be connec­

ted to either the same or different parent processor.

Afterward, using the processor, we construct the bi­

nary code tree described in the preceding section.

Let us consider step 1 in the procedure binarycode-

tree. In that case, we will use the parallel algorithms

to sort the seq냐ence S = (xi, x2. …, xn :' of distinct

probabilities in increasing order 〔3丄 This method

requires n1-e processors, where 0< e < 1 runs in 0(ne

log n) time. In 廿ie first step of PHDCM, we produce

the code using the same method as the parallel tree

construction. It requires 0(log n), which supports

the code.

The second phase is analogous to the first. The se­

cond phase requires only exchanging the two sub­

trees of the same weights the different processors

have. It is quite simple to implement. This phase,

(that is, step 2 of PHDCM) requires 0(1) to update

an element at level 1 of the tree.

In the third phase, we encode or decode the text

data from the dynamic octal-compact mapping code.

In this phase, each processor reads the text data and

we assign the proper code. The third step of the

PHDCM method is implemented by 0(n/p) time in

each processor. The PHDCM pseudo-algori나im is as

follows.

proced니re PHDCM
/* n : the size of text data,

p : the number of processor */

Liegiii

/* first step */

(1. a) Parallel quicksort using each probability

(1. b) for (traverse from the root to leaves) do in parallel

We assigned each processor's word 0 or 1

Search previous two symbols of S which were

combined as one symbol

ailfor

/* second step */

(2) If we choose two processors which have same

weights and different level, then they exchange.

If we choose two processors, one which exists a

higher level and the other which has a same

weights with ones leaf, then they exchange one

processor's leaf with the other's subtree.

/* third step */

(3) for(i = p[n/p] to ((p + 1)! n/p]) -1) do m par疝이* *

p-read(one character in text data)

we assigned the proper code in dynamic

compact code

ailfor

end

IV. Experimental Results

To implement the PHDCM on MasPar, we tested

randomly generated text sentences with various dis­

tributions. To properly use the tri-state transition of

Fig. 1, we have to know the occurrence probability

of each state's symbol. For parposes of this paper,

we randomly extracted about 1,150 characters from a

Hangul text. In case of applying other data with

probabilities, it represents the similar effect since

the mth-order Mar cove source has an advantage [2,

6], The probability of each symbol was computed to

create the statistical data used in the preceding sec­

tion. The result of the dynamic compact tree is

shown in Figures 4, 5, and 6, which represent Cho-

song(initial symbol), Jungsong(middle symbol), and

Jongsong(final symbol), respectively in Korean ch­

aracters. Although these figures show only one ex­

ample, other examples may exist which have the

same mathematical characteristic [2, 6], Tables 1, 2,

and 3 summarize these results.

5-1 The Joum시 of 나世 Acousticai Society of Korea. Vol. 11. No. 2E (1995)

92
0

퍼

z
li 11 1

3
“5

Fig. 4 Dynamic code tree for Chosong

Fig. 6 Dynamic code tree for Chongsong

Fig. 5 Dynamic code tree forjungsong

In tables 1, 2, and 3, the total sum of £ (prob­

ability x length) means the average code length L

which represents one symbol in each state. In order

to represent a Korean character, the average code

length is 9.2879 bits such as £ (probability x length)

:that is, 3.48238 (Chosong) +3.398339 (Jungsong) +

2.40714 (Jongsong).

The size of the sentences to be compressed ranged

from 0.01 million to 10 million symbols. Experiments

were conducted using each of 1, 2, 4, 8, 16, 32, and 64

processors on the MasPar machine. Each data point

presented in this section was obtained from the aver­

age of one program's execution. Each processed 10

million characters.

We have developed a program that provides the

optimal sequential DCM (Dynamic Compact Map­

ping). The time was used on 1 processor. It needs

the speedup [3] which evaluates a new data-compres

sion method for a problem. It is reasonable to assume

that the time of data compression using sequential

DCM is one PE :

tpe(n) = c n log n,

where c is a constant independent of size n. Sequen­

tial times for lists of more than 0.2 million elements

were calculated using the formula.

tpe(n) =----- n 刑。------ * tpe(100,000),
K 100,000 log 100,000 "

where 0.02 million Mn M 10 million and tpe(100,000)=

0.73 seconds. Note that if one uses this formula to

compute tpe(200,000), the result is almost a perfect

match with the corresponding experimental time.

Table 4 shows the time required to compress using

PHDCM, and Fig. 7 plots the speedups achieved. As

the problem size increases, the task granularity in­

creases. Offsetting the overheads of the algorithms

results in better speedup. Compression of 10 million

text data with 64 processors yielded a 49.314-fold

speedup, compared with one processor. This method

was implemented in each processor's local memory.

PHDCM : Efficient Compression of Hangul Text in Parallel 55

Global memory was used to communicate the code.

Table 1. Chosong

symbol r
frequency probability code ongtb prob. X length

1 127 '(Ui07? 111 ■}

T! K 0.1X)679 i Li.04879

65 0.05667 1101 4 0.22668
C 88 0.07672 ()0 내) 4 0.3068K
cz 16 0.01359 1010()0 6 0.0837
5 91 0.07933 ill 3 0.23799
□ 48 0.04185 110() 4 0.1674
tl 57 0.04969 0011 4 0.19876
m 2 0.00174 10100100 8 u. 01392
人 78 0.06801 1000 4 0.27204
시, 4 0.00349 1010011 7 0.0238
O 275 0.23976 01 2 0.47952
X 70 0.06103 0010 4 0,24412
k、 3 0.00262 101(X)101 8 U. 02096
X 40 0.03487 1101 4 0.13948
=? 5 0.00436 1001001 7 0.03052
E 15 0.01308 100101 6 0.07848

42 0.03662 won 5 0.1831
충 113 0.09852 0001 4 0.39408

total 1147 1.0 3. 48238

Table 3. Jongsong

symbol i frequency : probability code ength 1 prob. X length
51 ；0.44446 0100 4 0.17784

151 0,13156 001 3 0.39495

c 8 0.()0679 011011 6 0.04182
2 S9 0.07759 (X)00 4 0.31036

ai i n. ()0087 01100W1 g 0.()0783

2D 3 :0.00262 011000()0 8 0.02096

28 2 0.(X)174 011()00101 9 0.01556

□ 46 ,0.0401 0111 4 0.1604

너 i 10 「0.00872 011010 6 0.05232

HA 4 0.00349 01100001 8 0.02792

A 40 丨 0.03487 01010 5 0.17438

M 35 0.03052 01010 5 0.1526

O 62 ：0.05406 01011 4 0.21624

人 3 ! O.(X)262 01100101 8 0.02096

E 2 ! 0.00174 011000100 9 0.01566

jI 2 i 0.()0174 011001000 9 0.01566
궁 4 0,00349 0110011 7 0.02443

63() :0.54926 1 1 0.54926

4 1 0.()0349 011(X)011 8 0.02792

tot기 , 1147 ! i.o 2.40714

Table 2. Jungsong

叫一
§
5

2

5
 3

5

2

2

 5

6

 9

- 1

卜

기
*

丄뇌
놔

내
:::!

〒뉘

n
 니

—

一더

으

t 471
丄

8

”
 1

probability code ength prob. X length

0.19616 01 2 0.39232

0.03575 ()1111
，-
3 0.17875

0.00436 mono 7 0.03052

0.10637 no 3 0.31911

0.06713 011() 4 0.26852

0.00174 11101111 8 0.01392

0.08021 0011 4 0.32084

0.02092 mu 5 0.1046

0.03487 onio 5 0.17435

0.00174 11101110 8 0.01392

0.00436 1110101 7 0.03052

0.08195 0010 4 0.3278

0.00523 IIIOICXJ 7 0.03661

0.()0785 111101 6 0.0471

0.03226 11100 5 0.1613

0.13514 010 3 0.40542

0.17699 000 3 0,53097

0.00697 111100 6 0.04182

1.0 3,39839

Table 4. Time to compress using PHDCMtunit : second)

n PE -1 —— 2 4 8 16 32 64

100,000 0.73 0.464 0.194 0.083 0.038 0.0216 0,0258

200,000 1.26 0.905 0.436 0.205 0.083 0.0345 0.0402

4()0,000 2.67 1.997 0.942 0.457 0.222 0.1045 0.0805

800,000 5.19 4.017 2.273 1.045 0.457 0.228 0.1545

1,000,000 6.49 2.360 1.071 0.574 0.263 0.1882

2,000,000 12.87
一-一 1 2.339 1.288 0.5627 0.3715

4,000,000 25.51
거

- 2,495 1.075 0.6537

8,000,000

10,000,000

60.51

64.01

-i - - — 2.468 1,368

1.298

64

48

32

\ . Con이니sion

This paper suggests an efficient coding method in

parallel to be applied for Korean characters using a

three-state transition graph. The suggested method

represents 9.28781 bits per Korean character. In com­

parison, the binary compact code which is known as

the best so far, represents 10.37505 bits per Korean

character [6]. In other words, we compressed about

3.5 bits per Korean character. When we applied this

method to the parallel machine such as the MasPar,

it achieved a 49.314-fold speedup. For this run, we

used the English alphabet in one-to-one correspon-

0

16

16 32 48

PEs

Fig. 7 Speedup of PHDCM

dence with Korean characters since the MasPar com­

puter has no Korean characters.

In conclusion, PHDCM red니ces redundancy so that

56 The Journal of the Acoustical Society of Korea. Vol. 14. No. 2E (1995)

we ciin send and receive m이data with a minimal

number of bits. Error-detection problems on the tr

ansmission line were not considered m this research.

Acknowledgements

Dr. Kund니 supply me with constructive suggest

ions for improving this paper. And LSU provided me

with using MasPar Machine.

▲민 용 스!(Min, Yong Sik)

현재 : 호서대학교 전자계산학과 부교수

한국음향학회지 제14권1호

본 논문은 1994년도 호서대학교 학술연구조성비에 의한것임.

References

1. Kunth, Donald E., "Dynamic Huffman Coding". Journal

of Algorithm, vol. 6, no. 2, pp. 163-180, June, 1985.

2. Abramson, Norman, Information Theory and Coding,

McGraw-Hill, 1963.

3. Akl, Selim G., Parallel Sorting Algorihtms, Academic

press, 1985

4. Bookstein, A. and Klein, S. T., "Is Huffman Coding

Dead”，Proceedings of Data Compression, IEEE, p. 464,

1993.

5. Kim, K. T. and Min, Y. S., “A Study on the Compo-

sition of Compact Code using OCM”，Journal of KCI,

vol. 9, no. 3, pp. 103-107, 1984.

6. Kim, K. T. and Min, Y. S., "A Study on an Efficient

Coding of Hanguel", Journal of KCI, vol. 14, no. 6, pp.

533-641, 1987.

7. S. Roman, Coding and Information Theory, Spring-

Verag, 1992.

8. Yong Sik Min, "PDOCM : Fast Text Compression on

MasPar Machine", Journal of the Acoustical Society of

Korea, Vol. 14, No. 1, pp. 40-47, 1995.

