Al

PHDCM : Efficient Compression of Hangul Text in Parallel

PHDCM : 84 AFEA g2 Wl 2EQ] §&H ZoF

Yong Sik Min*

IR

1.

ABSTRACT

This paper describes an efficient coding method for Korean characters using a three-state transition graph. To our
knowledge, this is the first achievement of its kind. This new method, called the Parallel Hangul Dynamic Coding
Method (PHDCM). compresses aboul 3.5 bits per a Korean character. which 1is more than | bit shorter than the con-
ventional codes introduced thus far to achieve extensive code compression. When we ran the method on a MasPar
machine, which ts on SIMD-SM (EREW PRAM),, it achieved a 49.314-fold speedup with 64 processors having 10

million Korean characters,

2

(

@iy 3ohA) 9] Mol DLk E o e, B A eIl MasParel JB ool ol AN LB ARG A

Shalap @up W bedtell 2] 4 4] @ PHDCM (Parallel Hangul Dynamic Coding Method)2] & o] &3t Aol 3132 &

Salek o 35ulio) el Zete] e Ehe WRATh Trelm 1ol g vhansh Wl 16 1io] ahel Fofo} vhsghis R

)

FR o HubASh b olBeA, Bl W4 MasParol XA 64AE ol gsted A HFEARE e HEs

(Speedup? - 49314912 w4t

1. introduction

Because of rapid progress in data communications,
we are able to acquire the information we need with
ease, Although the parallel computer has made 1t pos-
sible to receive/transmit large volumes of data eas-
ily. it is necessary. nonetheless, to transmit only a
minimal amount of data bits. In particular, in the case
of Hangul, (the Korean characters), we constructed
a device which processes more efficient information
if used for its own special function. Even though most
people studied the mechanism and the construction
of Hangul's architecture, we need to minimize the
length of bits in Hangul.

This paper suggests a parallel data compression
method that applies to Hangul. Using a parallel ma-
chine such as the MasPar computer, which is on
EREW-PRAM, we developed the Parallel Hangul

CEAUE QAo
7t 1995 59 42

Dynamic Coding Method(PHDCM)}, which mimmizes
the bits, compared with any other conventional me-
thod. We used the dynamic Huffman code and our an-
alysis of Hangul characteristics to develop a tri-state
transition graph that greatly improves the efficiency
of data compression for the Hangul text, When the
PHDCM was implemented on a MasPar machine, it
achieved a 49.314-fold speedup using t4-processors
having 10 million Korean characters.

II. The Characteristics of Hangui

To develop our method, we studied data-compres-
sion methods that minimize the bits in sending chara-
cters and then worked to improve the transmission
speed of the data [2. 5, 6. 7).

One of the methods 1s the bit-mapping technique,
which has a great compression effect when there are
many spaces in the source symbol stream, The bit-
mapping technique works as follows. In the source

PHDCM : Efficient Compression of Hangul Text in Parallel

symbol stream S=1is;, s, ¢/, after determining
the total number of all symbols, we created a one-
byte bit map zone part. If the source symbol is u
blank, the bit-map zone corresponds to (}: otherwise,
it corresponds to 1. Next. we created the EBCDIC
with the right side of the bit-map zone. We proce-
eded with this method until the last symbol. In the
source symbol stream S=1is), $1, ..., Sq+. If 5 15 not
the last 8th symbol, (i.e., q# 8%, where1z]and =
an integer), the remaining part of the bif-map zone is
regarded as blanks, We represented the average
length of code, such as source symbol S=1s,, s, ...,
Sq!, as follows :

L=% p(s)Iis).

where pis;) 1s the probabi]'ity of symbol st and whete
1{s,} obtains an amount of information equal to

I(s,) =log: —— bits,

pls)
The average amount of information per source syri-
bol is called the entropy H(s). It is as follows :

1
= . s —— b :
H{s}) =Y p(s;) log, s bits

that is, H(s) <log: q(q:the number of source sym:
hol). However, since I{s,) has to be an integer, the
average length of code for an arbitary symbol S is as
follows :

H(S) < l{s) <H(5) + 1,

The hit-mapng rethod deals with fixed-length
codes. Next. w2 conssder *he compact binary code me-
thod, whicn deals with the variable code lengths of
differsnt symrols. In this method, the source symbeol
that ocours infregerntly in the text represents a long
code length whereas the symbol that occurs fre-
quently represents & short code length. The binary
compact code method compresses the data to 58% of
its original length. This method, however, has a ma-
jor disadvantage, f the source symbols have many
blanks, or there are many svmbols in the text that
occur frequently, this method requires longer code
lengths in total. Despite this shortcoming, the binary
compact code technique is the best [2].

In order to design the shortest code of entropy, we
adopted the variable length code, We found fre-

51

quency with which each Hangul symbol apperars in
the text, and then developed a compact code, which
has a different average length ot codes,

In the case of Hangul, we had to consider at least
21 states since we were using Hangul's 24 basic chara
vlers, There s no tnstate conditional probabihty
that treats one svmbo! with Chosong{initial symbol)
pair-consonant. double-vowel and Jongsong(final sym-
hol) double consonant, Also, we can use the graph
such as in Fig. 1 18], thus we have to achieve the ef-

ficient code,

vowel

/_/_,’,___.\\ {21 symbols)
-

i Chosong Jungsong |

Chosong consonant

{19 symbois)
TN
Jongsong

T Jongsong censonani
1 {27 symbois + nul)

1
o
stanl state

Fig. 1 Tri State transition graph

lll. Parallel Hangul Coding Method

To begin with, let us think about the sequential
dynamic compact method as follows. Given non-nega-
tive weights(w,. w-, .., w,). we can use the well
known algorithm of Huffman's code to construct a bi-
nary trec with n external nodes and n-1 internal
nodes, where the external nodes are labeled with we-
ights(wy, ws, ..., W) in increasing/decreasing order,
Huffman’s tree has the minimum value of wi,+... +
wnl. over all such binary trees, where |, is the level
at which wj occurs in the tree. Binary trees with n
external nodes are in one-to-one correspondence with
sets of n strings or {0, 1% For example, the binary
tree in Fig. 2 corresponds to the minimal code i 0, 10,
110, 111}. in Fig. 2, Huffman’s method combines the
two smallest weights w; and wj{the characters that
have the lowest probabilities to appear), then repl-
aces them with their sum w,+w,, and repeats this pro-
cess until only one weight is left. In this situation(see
Fig. 3), there is no way to distinguish weight 6 asso-
ciated with symbol A from weight 6 associated with
symbol C and D. This procedure, therefore, may form
two different trees(Fig. 2 and Fig. 3), depending
upon where the weight 6 that is associated with 2+

o
re

16" 15 placed, Both trees are optomum for the given

weights, simnge
X HI3X2FAX3+2X 3= 24 +2X2+5X2+6x2.

We call this method a dynamic compact code [1],
This procedure reforms Huffman's tree dynamically
in order to reduce the height of the tree. If weight 6
associated with A increases to 7, Fig. 2 15 better :
but, if weight 2 associated with D increases to 3, Fig,
3 1s better. In the average case, however, Fig. 3 is
hetter even though it has some advantages and dis-

advantages [1],

¢ 1)
(M) A

(B)

4 2

(C) (D)

Fig. 2 Huffman tree

4 2 5 6
(c) (D) (a) (B)

fig. 3 Dynamic tree

To construct the Huffman tree, we must complete
several steps. First, we investigate the probabilities
of each symbol in the context in order for it to corre-
spond to the character. This exercise proves that the
statistical data of 1,150 Korean characters from arbit-
ary text is suitable for this purpose.

The Tournal of the Acoustical Society of Korea, Vol. 1. No, 2E {1995}

Given the data structure above, it 15 not difficult
to design pseudo-algorithms of the binary code tree

as follows,

procedure binarycodetree(float p)
/% the source S with symbols |5, Si, ..., Sy} and
symbol probabilities | Py, P2, ..., Pyl %/
begin
(1) Let the symbols(except blank symbol) be or-
dered so that
PizP.2 .. 2P,
(2) We assigned the words 0 and 1 to the last se-
quence
(3} Combine the last two symbols of S into one
symbol
{4) Search back from the last sequence to the orig-
inal sequence through the reduced sources
(5) Repeat (2)-{4) until there left only two sym-
bols codes

end

The total time for the procedure binarycodetree
requires O{n log n) to construct the binary code tree,
Step 1 requires O(n log n}, which is the time com-
plexity of the best sorting algorithm such as Quick-
sort or Mergesort [3]. Step 2 requires Oflog n).
which constructs the tree. Step 3 takes a constant
time :and Step 4 takes O(]), where | is the level of
the tree,

We construct a dynamic Huffman tree from the bi-
nary code tree as follows [1].

procedure dynamictree
begin
{1) Represent a binary code tree with weights in
each symbol
{2) Majntain a linear list of symbols, in nodecrea-
sing order by weight
(3} Find the last symbol in this linear list that has
the same weight as a given symbol
(4) Interchange two subtrees of the same weights
(5} Increase the weight of the last node in some
block by unity
(6) Represent the correspondence between letters
and external symbols

end

This procedure requires O(n) :that is, a binary
code tree is constructed in steps 1 and 2 in the same

PHDCM : Efficient Compression of Hangul Text in Parallel

manner as for the above procedure binarycodetree.
Step 3 takes Ollog n), which traverses the tree.
Steps 4 and 5 require O{1), which updates an element
at level | of the tree and step 6 requires Q(n}, Toge-
ther, the steps require an overall ()in) time.

Next, we desciibe the parallel method referred o
earlier as the Parallel Hangul Dynamic Coding Me-
thod{PHDCM). PHDCM has three phases which com-
press the source symbols. In the first phase. we con-
struct the binary code tree from raw source symbols,
each of which has a probability, Before constructing
the binary code tree, we consider the number of
processors that are going to be used on the machine,
In this situation, there are three cases. P, the num-
ber of processors, is less than, equal to, or greater
than the numher of symbols at level 1, which con-
tains either all the symbols or part of the symbols.

If P is greater than or equal to the number of sym-
bols at level 1, then each processor at level i is con
nected to a single parent processor at level i-1 and to
each of its two child processors at level i + 1, except
for the root processor at level Q{which has no par-
ent) and the leaf processor at level d-1{which has no
children), If P is less than the number of symbols at
level {, then each processor at level i can be connec-
ted to either the same or different parent processor.
Afterward, using the processor, we construct the bi-
nary code tree described in the preceding section.
Let us consider step 1| in the procedure binarycode-
tree. In that case, we will use the parallel algorithms
to sort the sequence S=1ix,, Xo. %xn: of distinct
probabilities in increasing order [3]. This method
requires n' "¢ processors, where 0< e < 1 runs in O(n¢
log n) time. In the first step of PHDCM, we produce
the code using the same method as the parallel tree
construction, It requires Oflog n), which supports
the code.

The second phase is analogous to the first. The se-
cond phase requires only exchanging the two sub-
trees of the same weights the different processors
have, 1t is quite simple to implement., This phase,
(that is, step 2 of PHDCM) requires O(l} to update
an element at level | of the tree.

In the third phase, we encode or decode the text
data from the dynamic octal-compact mapping code,
In this phase, each processor reads the text data and
we assign the proper code. The third step of the
PHDCM method is implernented by O(n/p) time in
each processor. The PHDCM pseudo-algorithm is as

53

follows,

procedure PHDCM
/% n:the size of text data,
p : the number of processor %/
gl
/# first step %/
(1, a) Parallel qucksort using each probability
(1. b) for (traverse fromthe root to leaves) do in parallel
We assigned each processor's word 0 or 1
Search previous two symbols of S which were
combined as one symbol
allfor
/% second step %/
{2) If we choose two processors which have same
weights and different level, then they exchange.
1f we choose two processors. one which exists a
higher level and the other which has a same
weights with one’s leaf, then they exchange one
processor's leaf with the other’s subtree.
/% third step */
(3 forti=p*in/plto fip+11kin/pli—1) don paralle]
p-read(one character in text data)
we assigned the proper code in dynamic
compact code
allfor
end

V. Experimental Resuits

To implement the PHDCM on MasPar, we tested
randomly generated text sentences with various dis-
tributions. To properly use the tri-state transition of
Fig. 1. we have to know the occurrence probability
of each state's symbol, For purposes of this paper,
we randomiy extracted about 1,150 characters from a
Hangul text. In case of applying other data with
prohabilities, it represents the simlar effect since
the mth-order Marcove source has an advantage [2,
6]. The probability of each symbol was computed to
create the statistical data used in the preceding sec-
tion, The result of the dynamic compact tree is
shown in Figures 4, 5, and 6, which represent Cho-
song(initial symbol), Jungsong({middle symbol), and
Jongsong(final symbol), respectively in Korean ch-
aracters. Although these figures show only one ex-
ample, other examples may exist which have the
same mathematical characteristic {2, 6]. Tables 1, 2,
and 3 summarize these results.

Fig. 5 Dynamic code tree forJungsong

In tables 1, 2, and 3, the total sum of ¥ (prob-
ability X length) means the average code length L
which represents one symbol in each state. In order
to represent a Korean character, the average code
length is 9.2879 bits such as T (probability x length)
that is, 3.48238 (Chosong) + 3.398339 (Jungsong) +
2.40714 (Jongsong).

The size of the sentences to be compressed ranged
from (.01 million to 10 million symbols. Experiments
were conducted using each of 1, 2, 4, 8. 16, 32, and 64
processors on the MasPar machine. Each data point
presented in this section was obtained from the aver-
age of one program's execution. Each processed 10
mullion characters.

At The lournal of the Acoustiweal Society of Korea, Vol 1.1, No. 2E {1495}

630
(el

Fig. 6 Dynamic code tree for Chongsong

We have developed a program that provides the
optimal sequential DCM (Dynamic Compact Map-
ping), The time was used on 1 processor, It needs
the speedup [3] which evaluates a new data-compres
sion method for a problem, It is reasonable to assume
that the time of data compression using sequential
DCM isone PE:

tee{n) =cniogn,

where ¢ 1s a constant independent of size n, Sequen-
tial times for lists of more than 0.2 million elements
were calculated using the formula.

nlogn
100,000 log 100,000

tpefn) = * tp (100,000),
where 0,02 million < n < 10 million and t.(100,000) =
0.73 seconds. Note that if one uses this formula to
compute tp(200,000), the result is almost a perfect
match with the corresponding experimental time.
Table 4 shows the time required to compress using
PHDCM, and Fig. 7 plots the speedups achieved. As
the problem size increases, the task granularity in-
creases. Offsetting the overheads of the algorithms
resuits in better speedup. Compression of 10 millicn
text data with 64 processors yielded a 49,314-fold
speedup, compared with one processor. This method
was implemented in each processor's local memory.

PHDCM : Efficient Compression of Hangul Text in Parallel

Global memory was used to communicate the code,

Table 1. Chosong

sprohel f*eqamu E,ra‘nb.‘..t): de ongth ook, X lerigth |
B RS V- T} 1 SRR
M 3 UXL VLY ;Lopto D.04374
L 65] 0.05667 11101 1 4 022668
c B OOTRTZ OO A 030688
@ 16 | 001359 101000 P 6 ' 0.0837
a 91 7007933 111 P30 0.23799
a 48004185 11100 0 4 | 01674
= 57 1 0.04969 10011 ¢ 4 i 019876
w2 L.00179 wwu'wui 3 0 w01392
A T8 006801 (1000 4 027204
woLoa icoms [oeont |71 oloza
o | 25 om0l L2 04952
= | 7 | 006103 |010 | 4 0.24412
® i3 ©0.00262 1101001010 8 V. 02006
X 140 oo 0L 4 0.13948
2 0 5 | 0.00436 1001001 ¢ T 0.03052
E |15 | 001308 ! 100101 6 0.07348
= 42003662 | 10011 501831
& ;113 | 0.09852 | 0001 1 039408
otal : 147 | Lo | 348038

Table 2. Jungsong

Table 3. jongsong

symbol | frequency probability | code | ength | prob. X length
A Al - 044446 (LU0 - 4 | 017784
L 151 . 0.13156 | 001 I3 1 0.39495
c 8 S 000679 101101 1 6 i 0.04182
@ Rt 1,07759 ;0000 Cod 1.31036
a1 S OODRT D100EGE 0.00783
) 3 S 000262 01100000 3, ©.02096
% 9 CO0017T4 01000101 9 1,01556
o 16 00401 (0111 ! 4 ' 01604
B oW 000872 fo1010 F o6 | 005232
" L 000349 1011000010 B 1 002792
A 01003487 | 01010 | 5 1 017438
A 35 0,03052 1 01010 5 0 01526
o 62 . 005406 (01011 ¢ 4 ¢ 0.21624
x 3 P 0.00262 |01100101| B | 0.0209
E 2 P O.00174 [OLI000100; 9 1 0.01566
= 2 C0.00174 'numlmxn 9 - 0.0156
& 1 0.00349 0110011 | 7T 0.02443
COR30 L 05496 U 054926

E o4 000349 |01100011: 8 100292
total 1147 | 1.0 ! ; © 240714

Table 4. Time to compress using PHDCM (unit @ second }

symbol ; frequency ! probability code ength_igr_qb_ X length
P25 0.19616 | (3 D2 03923
H | 4 0.0357 |{11111 L5 017875
E I 5 D 0.00436 11110110 5 7 1 0.03052
§ 0 122 0 010837 1o 31 031911
§ 77006713 L0110 1 0.26852
9 2 | 0.00174 ; 1110111: 3 0.01392
4 o9 008021 00l !4 01.32084
4 o2 002092 NN s 01046
a4 140 [003487 o010 1 5 017435
M 2 1000174 ;11011100 8 | 001392
w5 Poomse ot o7 D 003082
T 0 W 0.08195 0010 . 4 . 0.3278
4 i 6 0.00523 | 1110100 § 7 ! 0.03661
T |9 0.00785 | 111101 6§ 0.0471
4 | ¥ 0.03226 | 11100 | 500 01613
b 155 0.13514 |010 P31 040542
— 203 | 0.17698 | 000 | 3, 053007
A L8| 000697 [11LI00 | 6 | 004182
total | 1147 | 1.0 : | 3.39839

V. Conclusion

This paper suggests an efficient coding method in
parallel to be applied for Korean characters using a
three-state transition graph. The suggested method
represents 9.28781 bits per Korean character. In com-
parison. the binary compact code which is known as
the best so far, represents 10.37505 bits per Korean
character [6]. In other words, we compressed about
3.5 bits per Korean character. When we applied this
method to the parallel machine such as the MasPar,
it achieved a 49.314-fold speedup. For this run, we
used the English alphabet in one-to-one correspon-

n PE | 1 j2 (4|3 |[16]3 |6
100,000, 0.73;0.464 | 0.194 | 0.083 | 0.038 | 0.0216 ; 0.0258
200,000 1.26160.905 ; 0.436 | 0.205 | 0.033 | 0.0345 ; 0.0402
400,001 2,67 1 1.997 10,942 : 0.457 1 0,222 1 0.1045 | 0.0805
800,000 519!401; 2.273[1.045 [0.457 {0.228 [0.1545
1000000 2,360 1.071]0.574 |0.263 |0,1882
2,000,000 1 ' 2,339 1.288 { 0.5627 | 0.3715
1,000,000 ; 25.9 - - 124951075 [0.6537
| 800000016051 | - (= - T | 2468 1368 |
L0000 6401 — = = - - L2oy
64
100000
3200000
= 400000
800000
1000000
48 | 2000000
«-4000000
8000000
10000000
a o
3 i
3 3 Vot
2 .
[72]

PEs

Fig. 7 Speedup of PHDCM

dence with Korean characters since the MasPar com-
puter has no Korean characters,
In conclusion, PHDCM reduces redundancy so that

36 The Journal of the Acoustical Society of Korea. Vol. 14. No, 2E {1995}

we can send and receive more data with @ minimal A% 2 AHMin. Yong Sik)

number of bits, Error-detection problems on the tr Haf o Q)& 42 A e 2w

ansmission hne were not constdered in this research, S-St z) Y141 S
Acknowledgements

Dr. Kundu supply me with constructive suggest
ions for improving this paper. And LSU provided me
with using MasPar Machine,

B 22 19T SHUSD HENTILBI0) 3%,

References

1. Kunth, Donald E., “Dynamic Huffman Coding™. Journal
of Algorithm, vol, 6, no, 2, pp. 163-180, June, 1985.

2. Abramson, Norman, Information Theory and Ceding,

McGraw-Hill, 1963.
. Akl, Selim G., Parallel Sorting Algorihtms, Academuc
press, 1985

4. Bookstein, A, and Klein, 8. T., “Is Huffman Coding
Dead”, Proceedings of Data Compression, 1EEE, p. 464,
1993,

5 Kim, K. T. and Min, Y. S., “A Study on the Compo-
sition of Compact Code using OCM”, Journal of KCi,
vol. 9, no. 3, pp. 103-107, 1984.

6. Kim, K. T. and Min, Y. S., A Study on an Efficient
Coding of Hanguel”, Journal of KCI, vol. 14, no. 6, pp.
533-641, 1987.

7. S. Roman, Coding and Information Theory, Spring-
Verag, 1992.

8. Yong Sik Min, *PDOCM :Fast Text Cornpression on
MasPar Machine”, Journal of the Acoustical Society of
Korea, Vol, 14, No. 1, pp. 40-47, 1995.

fov]

