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performance degradation and even instability. In

1. Introduction practice, the contact environment is poorly
During execution of the contact tasks of robots, known, or is just an estimation with

the end-effector changes its contact location and uncertainties. The controller of a manipulator

orientations. The mechanical properties of the must guarantee stability and performance robust

environment at the contact also changes. The to the uncertainties.

change of the mechanical properties can cause Robust control with respect to the
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environmental change is achieved in two ways;
First, controllers adapt to the new environment
by sensing the contact states and identifying the
environment. Second, a fixed controller is used
that guarantees robust stability, and possibly
performance, in the presence of the bounded
uncertainties of the environment. The former
uses the estimation of mechaﬁical properties and
geometry of the environment to evaluate the
second derivative of forcel), to adjust
impedancez), or to cancel out the contact
dynamics3). The reliability of these controls,
however, depends on the effectiveness of adaptive
algorithms, which is hard to achieve in the rapid
changing environment. The latter uses variable
structure control4), robust control gainss’6), or
force compensators-"). In the variable structure
control or the robust control gains, the bound of
the uncertainty is quantified and considered in the
design of the controllers. The force
compensators, however, is lacking in adequate
reflection of the uncertainty of the environment.
While improving performance in transient force
responses3’8), the force compensators evoke
stability problemsg). Consequently, the
application of compensators requires tradeoff
between performance and stability in the presence
of the environmental uncertainty. The present
research focuses on the force compensators in the
target dynamics that guarantee robust stability
and performance to the uncertainty.

For the robust design of the controllers, the
bound of the uncertainty as well as stability and
performance must be quantified. Quantified
measures for robust stability and performance are

developed in H__ control theorylo'“). Relying

oo

on the computed torque linearization, this chapter

aims at applying the H__ control theory to the
robust design of force compensators.

The H__ control theory is ideal for handling the
uncertainties in the frequency response of
systems, since the multiplcative property of the
H__, norm holds!2). Using H_ norm properties,
the robust stability and performance conditions
are defined. The two conditions, one for stability
and the other for performance condition, result in
multi-objective optimization problemslo). In
that case, optimization methods, such as U-
parameter design”), coupled Riccati Equation
approachM) can be used. In case of force
control, the two conditions can be merged into
one equivalent condition, called robust
performance condition!1,15),

The content in this paper begins with the brief
description of the target dynamics that uses the
high order compensator. Subsequent contents
focus on the design of the compensator. The
environment model is represented in linear
mechanical system, and sensitivity functions for
position and force control are introduced. The
uncertainty for a SISO system is defined, the
SISO version for H_ synthesis is applied. The
robust stability and performance conditions to the
environmental uncertainties are derived in terms
of the parameterized sensitivity functions. The
design problem for the compensator is
transformed into a mixed-sensitivity problem

that guarantees a solution.

2. Target dypamics model

A model of the target dynamicslG) is suggested
that uses state error feedbacks and compensated
force errars. It is shown that the method can be

applied to contact position and force tracking
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control by the proper design of the compensator.
The present paper extends the application to
robust control. The control method based on the
target dynamics is briefly described.

Assume that an articulated manipulator is
composed of n simply connected links, i.e., each
joint which connects the links has one relative
degree of freedom. A global coordinate system O-
xyz is fixed on the ground. The position and
orientation of the end-effector are x = [x, y, ...,
IT e R“1 in the global coordinates. The joint
coordinates are also used to express the relative
translational or rotational motion as q = [qq, 4y,
o q]T € Rnx1
corresponding joint torque (including force for

. - x1
translational joint) T = [T), Ty, .., T,0T € R .

in vector form, and

The symbol x, is the environmental position

before contact, and f is the force applied to the
environment by the manipulator. For simplicity,

it is assumed that the degree of the manipulator,
n, is same as the number of Cartesian coordinates
used.

Manipulator dynamics can be derived, using the
Lagrangian or variational principles, in the joint

coordinates as,

M@q+v@d=t, + JTf_ M

where v(q, (i) e R"™! is the gravitational,
Coriolis, and centrifugal force; T, € RnXI is the
control torque applied at joint actuators; J is the
Jacobian of the Cartesian coordinates with respect
to the joint coordinates; f,,, € R”1 is the
external force due to contact; and M € R is

the generalized mass matrix.
The target dynamics is representc.! in Cartesian
formulation as,

Go)x, = HO, ®

where x. = x4 - X, position error vector, x4 =
desired trajectory € Rn“, x = present Cartesian
pesition and orientation vector € R“1 yfe = £
- f4, force error vector, f; = the desired force or
torque € RMI, f. = the sensed force or torque (
~f,0e R, G = (1 + K, s + K, )
impedance for free motion control € Rn“, H(s)
= force compensator € R““, and s is the
Laplace transformation. The constants K, and
K, are diagonal matrices of derivative and
proportional position feedback gains,
respectively.

For simplicity, H(s) and G(s) are chosen as
diagonal matrices which decouple the control
dynamics. The joint torque is derived from the
control algorithm. Feedback and feedfowards of
states and force are used according to the target
dynamics. The joint driving torques based on the

target dynamics Eq.(2) are obtained as,

@)= ve Q+M@uy) -JT, 0

where

u©) " [x, K, x, +K,x, -H* @, -£)-J a] @

and the symbol * is a time convolution and ’v\'(q,
;1) and lcl(q) are the estimates of nonlinear force
v and inertia M, respectively. In practice, it is
possible that the sensed force f; may contain
errors, and the estimates, C(q, q) and Nf(q),
which results from on-line computation of the
manipulator model dynamics, may have
estimation etrors. However, we assume, for
simplicity in developing control algorithm, that
the sensing and the estimations are so accurate
that the measurement and estimation errors are

negligible.

-177—



360 Sang-moo Lee

e v ctio

The stability and performance of the controller
depends on the interaction between the end-
effector and the environment. The sensitivity
functions for position and force errors are
introduced to evaluate the stability and
performance. Parameterization of the
compensators, in general, simplifies the design
process. The compensators are parameterized, and
the design procedure is applied to the
parameterized variables.

In the present control, the plant consists of the
interaction between the end-effector and the
environment. For analysis purpose, it is assumed
that the environment can be modelled as a simple
passive mechanical system that consists of
inertia, damping, and stiffness as,

= EO)& -x)+f, = fy ®

where

Es)= Mg s%+Cg s +Kg ©

and the symbol f; is the force disturbance from
static load. The coefficients matrices; inertia Mg,
damping Cpg, and stiffness K g of the
environment; are diagonal matrices. These
matrices as well as the environmental geometry
X, may vary according to contact position.

A simplified linear control loop can be drawn as
in Fig.1 by substituting Eq.(5) to Eq.(2). The
closed loop can be viewed as a system with two-
input (x4, f4) and two-output (x, f;) with
position disturbance x, and force disturbance f,.
Viewing the control loop in Fig.2 as a multi-
input and multi-output system, each component of
sensitivity functions is obtained. The force error
fe = f4 - f5 is written as,

fe = -E) x -x5) +£4 -f,

= Ef) x, -B) (x4 -x,)+14 - £, o

From Eq.(2) and (7), the output errors are derived

in terms of sensitivity functions as,

Xe Sxx(s) S x‘(s) X3 %,

£, f.-f

Sfx(s) S ﬁ,(s) d o

where the sensitivity functions are defined as,

Sxx(5) Sxs)
S@) =
Sixs)  Sps)

G'HEG'H'E G'HE G

LEG'H'

In Equation (9), Sxx(s)’ Sxf(s), Sfx(s) and Sff(s)

denote the sensitivity functions of position-

®
GE G'W'E

position, position-force, force-position, and
force-force, respectively. Equations (7) shows
that the output force and position error are
dependent. Since the output vector Eq.(8) has
twice the dimension of the system output, either
the position or force error can be exclusively

chosen in design, depending on control task.

Fg. 1 The controj system

It is desirable to reduce design specifications by
parameterizing the compensators. Since the
plant, i.e., the contact environment in the
present research, is stable, the closed-loop

dynamics can be parameterized by a family of

—178—



Robust Control of a Manipulator Contacting the Uncertain Environment 361

stable, proper, and rational po]ynomials“'”).

The design problem is then simplified to picking
up a polynomial from that family, instead of
checking broad potential compensators.
Moreover, the sensitivity functions can be
expressed as affine functions (linear plus
constant) of the parameterization, and further
derivation of H__ control problems is simplified.

The stabilization parameter Q(s) is the transfer

function from fy to f; as,
-1 -1
Q(s)=H[ I+EG H ] (10)

The sensitivity functions Eq.(9) can be written in

terms of the stabilization parameter Eq.(10) as,
Sxx()  Sxis)

| Sx®)  Seres)

Ss)

G GQ
= an
| aec'oE @860

The sensitivity functions can be defined in

another way as the response variations with
respect to the plants”), i.e., the environments

in the present problem. This definition is useful
in dealing with the uncertainties. Robust control
design requires that the response variation due to
the uncertainties be suppressed within a given
bound. It implies that the sensitivity functions
are bounded in the presence of the uncertainties.
It is also useful to define complementary
sensitivities for representation of robust
stability. The complementary sensitivity
function for force control is defined as Tg =1 -
S¢r . Once the uncertainties and the sensitivity
functions are quantified, the well-established

control theory is available for robust control

design.

4. Robust Stabilit 1 Perf
Condition

Robust stability requires that the controller is
stable under the uncertainties of the environment,
and the robust performance requires that the
controller achieve the prescribed performance
under the uncertainties. = These conditions are
defined applying the H__ synthesis technique.

For simplicity, the robust condition is derived
for a single degree of freedom manipulator. After
linearizing the dynamics of the multi-degree of
freedom manipulator, the linearized equation has
no basic difference to the single degree of
freedom. The subsequent section uses plain
characters to denote scalar quantities.

The contact environment has uncertainties in
mechanical properties, such as stiffness, inertial
effects, or unmodeled higher order dynamics.
These uncertainties are quantitatively defined for
analysis. It is assumed that the environment in
the multiplicative uncertainty is perturbed around
the nominal environment, E(s) = Mg st + Cgs +

KE,as,

E=(+A)W(6)Bs), e <1 12
where the weighting function W,(s) is stable,
proper, real-rational, and minimum phase.
Typically, the magnitude of the weighting
function is monotonically increasing, since
uncertainties increase with increasing frequency.
Before discussing the robust stability and
performance, it is necessary to describe a nominal
performance condition, which applies to the
nominal environment. The condition requires
that the force or position sensitivity functions be
suppressed within a desired bound in the frequency

bandwidth. The performance condition is written
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for contact position control,
IW,6) S, (ko< 1 a3

and for contact force control,

IW; 6§ ko< 1 14)

The weighting function W,(s) is stable, proper,
real-rational, and minimum phase. The weighting
functions in Eqgs.(13) and (14) need not be the
same one. In Egs. (13) and (14), only the
magnitude of W;(s) is relevant. Typically,the
magnitude IW;(s)}l is monotonically decreasing,
since good tracking is required at low frequencies.

The robust stability condition!®) is that the
Nyquist plot of the closed-loop characteristics
equation does not change the number of
encirclements of the origin under the bounded
uncertainties. The condition is expressed in
terms of the complementary force sensitivity
function Ty(s) and the weighting function Wy(s)
that satisfy the following inequality,

ITOAW,O ko S ITEWE) o< 1 (15)

The robust stability condition is applied to both
position control and force control.

Robust performance requires that the controlled
system meets the robust stability and the nominal
performance condition in the presence of the

uncertainties of the environment. After a few
steps“), the robust performance Eq.(13) to the
uncertainties Eq.(12) is derived as,

1 + Wi

WS, , - W,5,.0) ko<1 (169)

The stability as well as the performance must be
guaranteed. From Eq.(9) and Eq.(15), the robust
stability is

IW,(s)S,, ()0 < 1 (16b)

The robust performance condition for position

control is Eq.(16a) and (16b). The position-
position sensitivity S,,(s) in both the inequality
conditions Eq.(16) is a common factor. When the
position-position sensitivity function approaches
zero, the left hand side of both inequalities in
Eq.(16) approach zero. It implies that robust
performance as well as stability can be improved
by reducing the position-position sensitivity
without any restriction. Such a compensator for
robust position control can be easily designed.
Contrary to position control, robust force
control needs trade-off between robust stability
and performance. The robust performance
condition requires that the performance condition
Eq.(14) and robust stability condition Eq.(15) be
satisfied in the presence of the uncertainties. The
two conditions are dependent upon each other and

are merged into one condition! 1,15:19) a5,
Y=1W,6)56) + o) Tl< 1 (17

The performance weighting W cannot be chosen
arbitrarily for the given stability bound W, in
order to satisfy Eq.(17). A necessary condition
for robust performancell) is that the weighting
functions satisfy min{ | W,(j®) |, | Wy(jw) |} <
1, Yo. It implies that if the given perturbation
of | W,(j®) | is greater than 1, the performance
specification | W (jo) | should be less than 1.

S. Desjgn b ving a dified
Problem

When the uncertainties of the environment are
given as bounded and unstructured, the robust
performance controller must satisfy the inequality
conditions, Eq.(16) or (17). This section uses the
conventional mixed-sensitivity problem to design
a robust controller that satisfies the robust

performance condition for force control.
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General solution methods for the inequality
problem Eq.(17) are not yet developed. Thus the
inequality problem is approximated by loop
shaping”) or a modified problem“v20).
Depending on the approximation, compensators
varying in order, magnitude, and phase, can be
designed. In design by the modified problem, the
modified criterion approximates the inequality
condition by a quadratic form, and transforms it
into a model-matching problem. The solution of
the model-matching problem leads to a
compensator, which is optimal with respect to
the modified criterion.

The performance measure W in Eq.(17) is a
function of the sum of two absolute values. This
is not easily trackable. The performance measure
is modified into a quadratic form using the

relationship

L (W 650 + W T )
V2

< {M/'l(sﬁn(s)z+ le(s)‘I;f(s)z)ll2 (18)

Instead of solving the problem Eq.(17), attempts
can be made to solve the quadratic form in the
right-hand side in Eq.(18). A sufficient condition
for robust performance condition Eq.(17) is

modified into a trackable one as,
2 2 1
T = HW,(6)5:6) + le(s)I;-t(s) Lo <3 19

The modified problem, Eq.(19), is posed and
solved by Verma and Jonckbeere20) and

Kwakernaak?l),
analytically found an optimal value of T in

Verma and Jonckheere

Eq.(19). A more efficient and simple suboptimal
controller can be designed using the simplified
algorithm“). This algorithm transforms the

quadratic equation (19) into a model-matching

problem. The solution procedure for the modified
problem is briefly described.
Equation (19) is rewritten using the sensitivity

functions Eq.(11) in matrix notation as,

Wi6) Wi6) Hy) / Gs) 2

l : Wl.<3 @
0 W) B / Go)

The left side of Eq.(20) is the identical form of
the model-matching problem. This modified
problem can be treated using the solution
algorithm described!422). Difference is that the
right side should be less than 1/2 to satisfy the
inequality condition in Eq.(20). To avoid
iterative procedure, Doyle et al.ll) suggest to use
equality( yv= 1/2).

For simplicity, the following terms are defined,

Ps) :=§ssl) Q13
Ri©)=Wi(s) )
Ro(s) =W, () P6) Qo
$,6):=0 ey
$15) =W, )6) @l

Then the modified equation is transformed as,
2 2 1
IRG)-REQA) +5,60)-S0Q) L. <3 @)

The inequality Eq.(22) involves the sum of the
two quadratic terms in the stabilization parameter
Q(s). The equation (22) is further rearranged so
that the model matching technique is applied as,

t Uy(5)-Usts) Qs)z +UE) < % @3
where
_ W5V, W (s IW,6)
U6 TWIEWI6) + Wo(s)Wafs) @)

The function Uys) satisfies Ux(-s) = Uj(s). The

functions Uj(s) and Uys) are the solutions of the
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following two equations,
Ro(R) + Sx8)5,6) = Un(=)66) @523
Ro(sR;(6) +Sx(6)5,6) = U(s ) 6) (25b)
By putting F(s) := Ry(-s)Rxs) + Sz(-s)S«s), a
spectral factor F_(s), which has stable zeros and
poles and satisfies F(s) = F_(-s)F_(s), is
computed. To remove unstable poles in Ui(s), an

all-pass function V(s) is chosen such that

_RYR(E) + Se86)
R T)

V6) € RH A (26)

U,6)=F_6)V6) @n
The all-pass function V(s) satisfies iV(s)] = 1.
Rearranging the inequality equation (23) yields a
model-matching problem as,

ITys) - T6) Q)< 1 @8)
where Ty(s) = U, ' (s)Uy(s), Ta(s) = U, (5)UAs),
and U 4(s) is a spectral factor of (% - Us(s)). The
solution is given as,

T6) - Ao Z5)
)=""""" 29
e

where Z(s) and A,y is a solution to the
Nevanlinna's Pick problem“'23). When Ty(s)
has a unstable single zero in Re s > 0 at sy, the
solution yields Z = 1 and Agy= Ti(sg). When
TAs) has multiple zeros in Re s > 0, the
Nevanlinna's Pick algorithm can be used. If A2
1, the modified robust performance problem is
not solvable. If A,y< 1, the compensator is,
then, determined as,

Qb)

He)= @0)

-1
1-Bs) G ) Qs)
As an example, a compensator is designed by
solving the modified problem. The bounds of

environmental uncertainty, performance

weighting functions, and the free motion

controller G(s) are given as,

055405

wl(s)= 540.01 (31a
1.25+1

Wz(S)—“_—Mm 5 B1b)

Bs)= Kg=10 Gl9

G§) = 5°+805s + 1600 61a

The performance weight Eq.(31a) is chosen such
that it is large at the low frequencies and low in
the high frequencies. The environment with
stiffness is chosen such that its uncertainty
Eq.(31b) is low at the low frequencies and high at
the high frequencies. The free motion controller
Eq.(31d) is designed as a critically damped system
with stable zeros at the s = -40. The modified
problem is solved by following the procedure.
The optimum solution with y= 1/2 is obtained

formally as,

-6
2.78x10 (s+40)5+40)5+10)5+1.38)
&)= EB81EH.01) 62

The formal solution, Q(s), of the modified
problem results in an improper polynomial. To
avoid the improper compensator, the solution is
rolled off by introducing

1
QAE=Q) ¢ 63

(w+H)

where k is the difference of the order of the
numerator to the denominator, and T is a small
number so that it may not affect the infinite
norm. The small number is chosen as T = 0.001
with k = 2. The proper solution is

_ 278x10 (6+40)5+40)5+10)5+1.38)
QAO=g001s 0 WIs 38 0) O

By substituting - Eq.(34) into Eq.(30), the

compensator is obtained as,
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_ 27914(5+40) (s+10)5+1.3849)
H8)= (1577054425 3Y5+2.284)5-0.01 13)

@5)

The compensator in Eq.(35) is proper. It is
noted that the compensator by the modified
problem is in high order, and the compensator
uses the right-plane pole. The sensitivity and
complementary sensitivity functions are shown in
Figs. 2 and 3, respectively. The force sensitivity
function shows the desired property that its value
is low at low frequencies, while it become large at
high frequencies. The magnitude and phase of the
compensators Eq.(35) are shown in Figs. 4 and §,

respectively.
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6. Conclusion

It has been shown that the target dynamics can
be applied to position and force tracking14).
This paper presents theoretical bases to extend
the application of the target dynamics to robust
control. To theoretically show the applicability,
it is assumed that the nonlinear dynamics of a
manipulator is exactly cancelled, and the
environmental uncertainty is expressed in
multiplicative form. Introducing sensitivity
functions for position and force output errors, the
robust stability and performance conditions are
derived using H_, control synthesis. The result
shows that the robust performance compensator
can be easily designed by suppressing the

position sensitivity function. Robust force
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control, however, requires trade-off between the
stability and performance. The design example
for robust force control by solving the modified
problem shows the robust performance of the

force controller.
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