Journal of the Korean Chemical Society 1995, Vol. 39, No. 4 Printed in the Republic of Korea

단 신

MoO₂Cl₂(dppp-O) 및 WO₂Cl₂(phen) (dppp=1,3-bis(diphenylphosphino)propane, phen=1,10-phenanthroline) 착물의 결정구조

具相午*·牟成鍾

경북대학교 자연과학대학 화학과 (1994. 12. 26 접수)

Crystal Structure of $MoO_2Cl_2(dppp-O)$ and $WO_2Cl_2(phen)$ (dppp=1,3-bis(diphenylphosphino)propane, phen=1,10-phenanthroline)

Sang-Oh Oh* and Seong-Jong Mo

Department of Chemistry, Kyungpook National University, Daegu 702-701, Korea (Received December 26, 1994)

물리브텐과 텅스텐의 산화상태는 -2가에서 +6 까지 다양하며 대부분 비슷한 구조의 이핵 및 다핵 착물을 잘 형성한다.^{1~4} 특히, 6가와 같은 높은 산 화상태에서는 더욱 유사한 화학적 성질을 나타내며 대부분 이량체 및 다핵 착물을 잘 형성하기 때문에 알려진 단핵 착물은 MO₃ 형태의 산화물이 대부분 이다.

Brisdon은 1967년에 oxychloro 착물인 MO₂Cl₂L₂ (M=Mo, W)에 대해 많은 연구를 하였으며⁵ 이들 착물이 고체상태에서는 대부분 산소가 다리결합한 다핵착물로 존재하고 중기상태에서는 단핵 착물로 존재한다는 사실을 확인하였다. 이러한 현상은 몰리 브덴보다는 텅스탠 착물에서 더욱 두드러지게 나타 났으며 고체상태의 oxychloro 착물을 얻기가 매우 힘들었기 때문에 X-선 회절법으로 분자구조를 확인 한 착물은 몇몇 한 자리 리간드 착물에 불과하고⁶ 킬레이트 착물얘 대해서는 많이 알려져 있지 않다. 본 연구에서는 1,10-phenanthroline(phen), 1,3-bis (diphenyl-phosphino)propane(dppp) 리간드를 사용 하여 한성한 6가 상태의 몰리브덴과 텅스텐의 oxychloro 킬레이트 착물에 대해 X-선 회절법을 이용한 분자구조 및 분광학적 성질에 대해 보고하고자 한 다.

Table 1은 crystallographic data 및 data collection

결과를 요약한 것이며 최종 위치 및 열역학적 parameter를 Table 2에 나타내었고 착물의 주요 원자간 결합거리 및 결합각을 선별하여 Table 3과 4에 각각 나타내었다. 착물의 적외선 스팩트럼에서 948 cm⁻¹ 와 937 cm⁻¹에 Mo=O 및 W=O 신축진동에 외한 띠가 각각 나타났으며 특히, MoO₂Cl₂(dppp-O) 착 물의 경우, 순수한 dppp 리간드에서는 나타나지 않는 1137 cm⁻¹의 새로운 흡수띠는 P=O 신축진동에 의 한 띠로 추정되었다.⁸ 또한 이들 착물의 ¹H 및 ¹³C NMR 스팩트럼에서 각각의 자유 리간드 스펙트럼과 비교해 보았을 때 다소 낮은 장으로 이동한 것을 제외하고는 매우 유사한 형태로 나타난 것으로 보아 착물의 구조가 자유 리간드 정도의 대칭성을 갖는 것으로 생각되었다.

Fig. 1과 2는 X-선 회절법을 통해 나타낸 아들 착물의 분자구조로서 Cl-Mo-Cl과 Cl-W-Cl 결합각 이 각각 163.87°와 158.0°이고 말단 산소와 금속 과의 O-Mo-O와 O-W-O 결합각은 각각 101.2°와 106.0°였으며 옥소기는 서로 cis 위치로, 염소 원자는 trans 위치로 결합되어 있는 다소 찌그러진 팔면체 단핵 착물이었다. 말단 산소의 출처는 acetone 용 매속의 용존 산소로 생각되며 NMR 스펙트럼에서 확인된 바와 같이 매우 대칭성이 높은 C₂, 점군의 구조로서 MoO₂Cl₂(dppp-O) 착물은 dppp 리간드의

Table 1. Summary of crystallographic data and intensity collection for MoO₂(dppp-O)Cl₂ and WO₂(phen)Cl₂

Compound	MoO2(dppp-O)Cl2	WO ₂ (phen)Cl ₂
Empirical formula	MoC27P2O4H26Cl2	WC12N2O2HaCl2
F	643.30	466.97
Crystal system	Monoclinic	Monoclinic
Space group	P21(#4)	C2/c(#15)
Z	2	4
Cell parameters		
<i>a</i> (Å)	8.696(5)	13.845(5)
b(Å)	19.209(2)	9.851(4)
<i>c</i> (Å)	8.689(2)	11.613(3)
β(deg)	104.19(4)	121.98(2)
V(Å ³)	1407.1(9)	1343.6(9)
$D_{\rm calc}(g/{\rm cm}^3)$	1.519	2.310
$\mu(cm^{-1} \text{ with } Mo-K_a)$	7.9	46.2
Transmission factor	0.97~1.00	0.64~1.00
Scan type	ω-2θ	ω-2 0
Scan width(ω)(deg)	5.36+0.59 tan0	$2.36 \pm 1.56 \tan \theta$
20 _{max} (deg)	70	70
No. of reflections		
measured	4621	1659
No. of reflections		
observed		
(l>3o(l))	2356	1118
F(000)	652	872
No. of variables	324	88
Discrepancy indices		
R ^e	0.047	0.029
R_{μ}^{b}	0.051	0.039
Goodness of fit		
indicator	1.44	1.39
Maximum shift in		
final cycles	less than 0.01	less than 0.01

 ${}^{o}R = \sum |F_o - |F_c|| /F_o. {}^{b}R_w = [(\sum w(F_o - |F_c|)^2 / \sum w(F_o^2)]^{1/2},$ where $w = 4F_o^2 / \Sigma^2 (F_o^2)$. (Standard deviation of an observation of unit weight: $[\sum w(F_o - |F_c|)^2 / (N_o - N_v)]^{1/2},$ where $N_o =$ number of observations and $N_r =$ number of variables.

P 자리에 있는 phenyl기가 반대편 P 자리의 phenyl기와 서로 꼬인 위치를 하고 있었다. 또한 적외선 스펙트럼에서 추정한 것처럼 순수한 dppp 리간드를 사용했음에도 불구하고 P 자리까지 산화되어 phosphine oxide 형태로 금속에 배워결합되어 있었다. 이와 같은 현상은 P-binding 리간드의 착물합성시 흔히 일어나는 결과²로 N과는 달리 P 원자에 있는 빈 n-반게 궤도 때문에 역시 acetone 용매속의 용존 산소에 의해 서서히 산화가 진행된 것으로 판단된다. 말단 Mo-O 결합거리는 1.69 Å, dppp의 산소와의 Mo-O 결합거리는 2.16 Å으로 이미 보고된 관련 화 합물의 결과⁶⁹와 비교해 볼 때 전자는 결합차수가 약 2.5이고, 후자는 단일결합에 가까웠다. 그 밖에 P-O는 1.50 Å으로 이중결함에 가까웠고 Mo-Cl 등 나머지 원자간 결합거리는 보고된 결과와 매우 비 숫하였다. 또한 WO₂Cl₂(phen)는 앞에서도 언급한 바 있지만 대부분의 6가 텅스텐 착물이 다핵 착물을 잘 형성함에도 불구하고 X-선 회절법을 통한 분자구조 분석결과 분명한 킬레이트 단핵 착물이었다. 말단 W-O 결합거리는 1.718 Å으로 몰리브덴 착물보다는 약간 더 걸었으며 W-Cl이 2.355 Å, W-N이 2.282 Å, 그 밖에 일반적인 원자간 결합거리는 역시 보고된 다른 연구결과와 유사하였다.

실 험

시약 및 기기. MoCls와 phen 및 dppp는 Aldrich사 특급 시약이며 WCls는 Ventron사의 특급시 약으로서 정제하지 않고 그대로 사용하였다. Acetone 및 ethyl ether는 JUNSEI 특급시약으로 CaH₂ 를 사용하여 정제하였다.⁷

몰리브덴 및 텅스텐 금속의 정량분석은 Varian사 의 AA-40 기기를 이용하여 원자흡수 분광법으로 실시하였으며 탄소, 수소, 질소의 원소분석은 Carlo Erba사의 Strumentazion 1106, 적외선 흡수스펙트 럽은 Midac사의 FT-IR로써 KBr 원판법으로 측정 하였고 'H 및 ¹³C NMR은 Bruker사의 Am-300(300 MHz)으로 내외부 기준물질 모두 SiMe4를 사용해서 측정하였다.

학물의 합성. Brisdon의 oxychloro 착물의 합성 방법은 크게 세 가지가 있으며⁵ 그 중 한 가지를 적용하여 분말 상태의 화합물을 얻지 않고 결정성 장을 곧바로 시도하였다. 즉, acetone 용매에 MoCls 0.5 mmol(0.137 g)과 WCl₆ 0.5 mmol(0.198 g)를 각각 녹이고 이 용액에 dppp 0.6 mmol(0.245 g)과 phen 0.6 mmol(0.12 g)을 약간 과량되게 각각 가한 후 약 30분 정도 저어주었다. 녹지 않은 미량의 물질은 걸러내고 밝은 용액을 Schlenk-tube속에 넣은 다음, ethyl ether 중기가 서서히 이 용액에 섞여질 수

319

吳相午・牟成鍾

Table 2. Final position parameters and Bee temperture factors' for MoO2(dppp-O)Cl2 and WO2(phen)Cl2

Atom	x	у	2	<i>B</i> _≪ (Ų)∕	Atom	<i>x</i>	y	Z	B.,(Å2)*
MoO2(d)	ppp-0)Cl ₂			-				_	
Mo1	0.3541(8)	0.221	0.1459(8)	2.86(1)	C10	0.5631(9)	0.3791(4)	-0.1842(9)	2.5(2)
CI1	0.1782(3)	0.1678(2)	-0.0792(3)	4.35(5)	C11	0.652 (1)	0.4035(5)	-0.037 (1)	4.5(2)
C12	0.5787(3)	0.2742(2)	0.3217(3)	4.40(6)	C12	0.738 (1)	0.4647(6)	-0.031 (1)	5.1(3)
P1	0.4422(3)	0.3028(1)	-0.1869(2)	2.63(4)	C13	0.736 (1)	0.5022(5)	-0.166 (2)	5.0(3)
P2	0.6868(3)	0.1396(1)	0.0578(3)	2.68(4)	C14	0.645 (1)	0.4777(6)	-0.314 (1)	5.2(3)
01	0.2191(8)	0.2811(4)	0.1677(8)	4.6 (1)	C15	0.562 (1)	0.4155(6)	-0.324 (1)	4.3(2)
02	0.3328(8)	0.1604(4)	0.2814(7)	4.6 (2)	C16	0.684 (1)	0.0625(5)	-0.0612(9)	2.9(2)
03	0.4325(7)	0.2880(3)	-0.0201(6)	3.0 (1)	C17 ,	0.536 (1)	0.0396(5)	-0.151 (1)	4.2(2)
04	0.5204(6)	0.1543(3)	0.0675(6)	2.9 (1)	C18	0.534 (1)	-0.0229(7)	-0.237 (1)	5.3(3)
C1	0.5257(9)	0.2316(5)	-0.2735(8)	3.2 (2)	C19	0.669 (2)	-0.0594(6)	-0.234 (1)	5.3(3)
C2	0.7079(9)	0.2225(7)	-0.2082(9)	3.7 (2)	C20	0.814 (2)	-0.0351(7)	-0.144 (1)	5.5(3)
C3	0.7729(9)	0.2127(6)	-0.0286(9)	3.6 (2)	C21	0.823 (1)	0.0271(6)	-0.061 (1)	4.4(2)
C4	0.250 (1)	0.3230(5)	-0.311 (1)	3.0 (2)	C22	0.811 (1)	0.1183(5)	0.251 (1)	3.3(2)
C5	0.196 (1)	0.3045(7)	-0.464 (1)	5.1 (3)	C23	0.963 (1)	0.1386(7)	0.303 (1)	5.5(3)
C6	0.047 (1)	0.3257(8)	- 0.549 (1)	6.8 (3)	C24	1.049 (2)	0.1171(8)	0.453 (2)	7.0(4)
C7	-0.051 (1)	0.3626(8)	-0.476 (1)	6.1 (3)	C25	0.974 (2)	0.0800(8)	0.553 (1)	6.5(3)
C8	0.003 (2)	0.3809(9)	-0.322 (2)	9.4 (4)	C26	0.821 (2)	0.0620(9)	0.495 (2)	8.8(4)
C9	0.152 (1)	0.3609(8)	-0.238 (2)	8.2 (4)	C27	0.738 (2)	0.0795(8)	0.345 (1)	8.8(4)
WO2(ph	en)Cl ₂								
W1	0.000	0.2485(4)	0.250	2.65(6)	C2	0.2907(6)	0.5523(9)	0.3885(7)	4.2(2)
Cl1	0.0249(2)	0.2941(2)	0.4630(2)	3.77(4)	C3	0.2376(6)	0.6739(8)	0.3607(7)	4.7(2)
01	0.1161(4)	0.1435(5)	0.3093(5)	4.1 (1)	C4	0.1195(6)	0.6849(7)	0.3052(6)	3.7(2)
N1	0.1114(4)	0.4377(6)	0.3048(5)	2.6 (1)	C5	0.0602(4)	0.5593(6)	0.2790(5)	2.4(1)
Cl	0.2260(5)	0.4335(8)	0.3612(6)	3.6 (2)	C6	0.0563(6)	0.8088(7)	0.2767(7)	4.5(2)

^aNumbers in parentheses are the estimated standard deviations in the units of the least significant figure given for the corresponding parameter. ${}^{b}B_{s}$'s for anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as $(4/3)[a^{2}\beta_{11}+b^{2}\beta_{22}+c^{2}_{33}+(ab\ \cos\gamma)\beta_{12}+(ac\ \cos\beta)\beta_{13}+(bc\ \cos\alpha)\beta_{23}]$.

있도록 ethyl ether가 들어있는 Schlenk-tube와 서로 연결시켜 놓았다. 실온에서 약 2주일 정도 방치 하 였더니 매우 옅은 녹색의 MoO₂Cl₂(dppp-O)와 매우 옅은 노란색의 WO₂Cl₂(phen) 단결정이 성장되었다.

 $M_0C_{27}P_2O_4H_{26}Cl_2(MW = 643.30)$, Yield = 78%.

Calcd(%): Mo, 14.91; C, 50.41; H, 4.07.

Found(%): Mo, 15.01; C, 49.95; H, 4.19.

IR(KBr, cm⁻¹): 1436 υ (CC(ϕ -)), 1137 υ (P=O), 948 υ (Mo=O), 730 υ (P-C).

¹H NMR(DMSO- d_6 , ppm): 1.71(br, -CH₂-), 2.55 (br, (PCH₂)₂), 7.45~7.70(m, (C₆H₅)₄).

¹³C NMR(DMSO- d_6 , ppm): 27.31(-CH₂-), 28.31 ((PCH₂)₂), 128.50~134.10((C₆H₅)₄).

 $WC_{12}N_2O_2H_8Cl_2(MW = 466.97)$, Yield = 75%. IR(KBr, cm⁻¹): 1436 v(CC(ϕ -)), 937 v(W=O). ¹H NMR(DMSO- d_6 , ppm): 8.23(q, 2H(ϕ -)), 8.39 (s, 2H(ϕ -)), 9.11(q, 2H(ϕ -)), 9.33(q, 2H(ϕ -)).

¹³C NMR(DMSO-*d*₆, ppm): 125.71(2C(φ-)), 127.52 (2C(φ-)), 129.58(2C(φ-)), 137.37(2C(φ-)), 141.97(2C (φ-)), 147.60(2C(φ-)).

X-선 회절분석, 성장시킨 단결정 중 X-선 회절 실험에 적당한 결정을 골라 X-선 회절세기를 측정 하였다. 사용한 기기는 Enraf-Nonius CAD-4-Turbo 단결정용 회절 측정기이며 몰리브덴 과녁을 이용해 서 발생되는 X-선을 Kα(λ=0.71073Å)만 단일 파 장화하여 단결정에 조사시켰다. 회절세기를 측정하 기 위해 pulse height 분석기가 부착된 scintillation 검출기가 사용되었으며 단결정의 단위세포(unit cell) 상수는 20가 약 30°까자의 25개의 high-angle reflection으로부터 least-square법으로 계산한 결과 다

Table 3. Selected bond lengths and bond anglesa for MoO₂Cl₂(dppp-O)

(a) bond lengths ((Å)		
Mo(1)-Cl(1)	2.397(3)	P(1)-C(10)	1.800(9)
Mo(1)-Cl(2)	2.392(3)	P(2)-O(4)	1.496(6)
Mo(1)-O(1)	1.689(7)	P(2)-C(3)	1.84(1)
Mo(1)-O(2)	1.698(7)	P(2)-C(16)	1.80(1)
Mo(1)-O(3)	2.162(6)	P(2)-C(22)	1.80(1)
Mo(1)-O(4)	2.164(6)	C(1)-C(2)	1,56(1)
P(1)-O(3)	1.499(6)	C(2)-C(3)	1.54(1)
P(1)-C(1)	1.80(1)	C(4)-C(5)	1.35(1)
P(1)-C(4)	1.79(1)		
(b) bond angles (°)		
Cl(1)-Mo(1)-Cl(2)	163.87(9)	Cl(1)-Mo(1)-O(1)	93.5(3)
Cl(1)-Mo(1)-O(2)	96.7(3)	Cl(1)-Mo(1)-O(3)	87.2(2)
Cl(1)-Mo(1)-O(4)	80.3(2)	Cl(2)-Mo(1)-O(1)	96.8(3)
Cl(2)-Mo(1)-O(2)	93.5(3)	Cl(2)-Mo(1)-O(3)	80.3(2)
Cl(2)-Mo(1)-O(4)	87.1(2)	O(1)-Mo(1)-O(2)	101.2(4)
O(1)-Mo(1)-O(3)	90.6(3)	O(1)-Mo(1)-O(4)	167.5(3)
O(2)-Mo(1)-O(3)	167.3(3)	O(2)-Mo(1)-O(4)	90.3(3)
O(3)-Mo(1)-O(4)	78.4(2)		

^eThe numbers in parentheses are the estimated standard deviations in the unitsof the least significant digit given for the corresponding parameters.

Table 4. Selected bond lengths and bond angles a for $WO_2Cl_2(phen)$

(a) bond lengths	(Å)		
W(1)-CI(1)	2.355(2)	C(1)-C(2)	1.40(1)
W(1)-Cl(1)'	2.355(2)	C(2)-C(3)	1.35(1)
W(1)-O(1)	1.718(5)	C(3)-C(4)	1.41(1)
W(1)-O(1)'	1.718(5)	C(4)-C(5)	1.425(9)
W(1)-N(1)	2.282(6)	C(4)-C(6)	1.43(1)
W(1)-N(1)'	2.282(6)	C(5)-C(5)'	1.43(1)
N(1)-C(1)	1.359(8)	C(6)-C(6)'	1.34(2)
N(1)-C(5)	1.341(8)		
(b) bond angles ((°)		
Cl(1)-W(1)-Cl(1)	158.0(1)	Cl(1)-W(1)-O(1)	96.2(2)
Cl(1)-W(1)-O(1)'	97.0(2)	CI(1)-W(1)-N(1)	81.4(1)
Cl(1)-W(1)-N(1)	80.7(1)	O(1)-W(1)-O(1)'	106.0(4)
O(1)-W(1)-N(1)	91.7(2)	O(1)-W(1)-N(1)'	162.3(2)
N(1)-W(1)-N(1)'	70.6(3)	W(1)-N(1)-C(5)	85.2(2)

^eThe numbers in parentheses are the estimated standard deviations in the unitsof the least significant digit given for the corresponding parameters.

음과 같았다. MoO₂Cl₂(dppp-O): $a(\text{\AA}) = 8.696(5), b$ (Å) = 19.209(2), $c(\text{\AA}) = 8.689(2), \beta(\text{deg}) = 104.19(4), V$ (Å³) = 1407.1(9); WO₂Cl₂(phen): $a(\text{\AA}) = 3.845(5), b(\text{\AA})$

Fig. 1. Molecular structure of MoO₂Cl₂(dppp-O).

Fig. 2. Molecular structure of WO₂Cl₂(phen).

=9.851(4), $c(\text{\AA})$ =11.613(3), $\beta(\text{deg})$ =121.98(2), $V(\text{\AA}^3)$ = 343.6(9). 회절세기 데이터는 ω-20법을 사용하여 20 범위를 최고 70°까지 측정하였으며 회절세기에 따라 주사 속도가 자동적으로 조절되는 자동 속도 조절기를 사용하였다. 그 결과 MoO₂Cl₂(dppp-O)는 4,621개의 회절선 중 3σ 이상의 회절선이 2,356개. WO₂Cl₂(phen)는 1,659개 회절선 중 3σ 이상의 회 절선이 1.118개였으며 이 데이터의 systematic absence로부터 가능한 space group은 각각 P2₁(#4)과 C2/c(#15)였다. X-선 결정구조는 SHELX 86 program을 사용하여 직접법으로 풀었으며 structure refinement는 SHELX 76 program을 사용하여 full matrix least-square 방법으로 실시하였다. 이 때, non-hydrogen atom은 비둥방성 열역학적 parameter를 사용하였으며, 수소원자는 결합되어 있는 원 자의 ideal geometry 계산법으로 동방성 열역학적 parameter를 사용하였다. 그 결과 최종적인 오차는

吴相午・牟成鍾

MoO₂Cl₂(dppp-O)에서 R=0.047, R_u=0.051 또 WO₂

Cl₂(phen)에서 R=0.029, R_w=0.039의 좋은 값이 각 각 나타났다.

본 연구는 교육부 기초과학 육성에 의한 것이며 당부에 깊은 감사를 드립니다.

인 용 문 헌

- Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 4th Ed.; Wiley Press: New York, U. S. A., 1980; p 844.
- 2. Greenweed, N. N.; Earnshaw, A. Chemistry of the

Elements; Pergamon Press: 1984; p 1167.

- 3. Stiefel, E. Inorg. Chem. 1976, 22, 1.
- 4. Dori, Z. Prog. Inorg. Chem. 1981, 28, 239.
- 5. Brisdon, B. J. Inorg. Chem. 1967, 6, 1791.
- 6. Florian, L. R.; Corey, E. R. Inorg. Chem. 1968, 7, 722.
- Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals; Pergamon Press: Oxford, U. K., 1988.
- 8. Hughes, W. B.; Zuech, E. A. Inorg. Chem. 1973, 12, 471.
- Baird, M. C. Metal-Metal Bonds in Transition Metal Compounds, in Progress in Inorganic Chemistry; Interscience: N. Y., 1988; p 28.