Journal of the Korean Chemical Society **1995**, *Vol. 39. No. 3* Printed in the Republic of Korea

Pyrazole 유도체들의 Tautomer들에 대한 Ab Initio와 Semi-Empirical 계산

李鴻基・任善花・第聖慶・美聖權*

충남대학교 자연과학대학 화학과 (1994. 10. 12 접수)

Ab Initio and Semi-Empirical Calculations of the Tautomers of Pyrazole Derivatives

Hong Gi Yi, Seon Hwa Yim, Sung Gyung Jung, and Sung Kwon Kang* Department of Chemistry, Chungnam National University, Taejon 305-764, Korea (Received October 12, 1994)

요 약. Pyrazole 유도체들인 1,2,4-triazolidine-3,5-dione(1)과 1,3,4-oxa(or thia)diazolidine-2,5-dione(2, 3)의 lactam-lactim tautomer들을 ab initio, AM1 그리고 PM3 방법으로 연구하였다. 새 가지 방법에서 모두 1 화합물의 가장 안정한 형태는 dilactam인 1a이고 다음으로 lactam-lactim인 2b로 결정되었다. 계산방법에 따라 1a와 1b의 에너지 차이는 4.1~12.6 kcal/mol로 계산되었다. 1a에 대한 ab initio 구조는 X-ray 구조와 잘 일치하고 있다. 2 화합물의 안정도는 2a>2b>2c인 반면 황원자를 포함하고 있는 3 화합물 tautomer들간의 안정도 순서는 계산방법에 의존된다. 3-21G에서는 3a가 3b보다 4.9 kcal/mol 안정한 반면 AM1은 3b가 2.71 kcal/mol 안정한 결과를 얻었다.

ABSTRACT. Molecular orbital calculations at the ab initio, AM1, and PM3 levels have been carried out to investigate the lactam-lactim tautomerism of 1,2,4-triazolidine-3,5- dione(1) and 1,3,4-oxa(or thia) diazolidine-2,5-dione(2, 3). Most stable tautomer in 1 compound has been calculated to be a dilactam 1a and next one is lactam-lactim 1b. The relative energies between 1a and 1b are $4.1 \sim 12.6$ kcal/mol depending on computational methods. The optimized 1a structure at ab initio level is in good agreement with X-ray structure. While the stabilities of 2 tautomers are in order of 2a > 2b > 2c, the stabilities of 3 tautomers are dependent on methods. According to 3-21G basis set, 3a tautomer is more stable by 4.9 kcal/mol over 3b tautomer. In contrast, the heat of formation of 3a at AM1 is higher by 2.71 kcal/mol than 3b.

서 톤

Tautomerism 현상은 화학결합과 구조-활성도 관 계에 대한 정량적 개념에서 뿐만 아니라 분자생물학, 효소-기질의 상호작용 관계에서도 매우 중요하게 작용한다. 최근에 질소가 포함된 헤태로 고리확합물 들의 tautomerism에 대한 정성적 및 정량적 실험과 이론 연구가 많은 연구그룹에 의하여 수행되어지고 있다.¹ 그러나 대부분의 연구들이 핵산과 관련된 pyrimidine 계열의 염기성들에 관한 것들로 고리내에 헤테로 원자가 바로 이웃에 위치한 Heteroaromatic 화합물들의 tautomerism 현상에 대한 연구는 불안 정하다는 이유로 연구가 미비한 실정이다.² Hillier와 공동연구자들에 의하여 3-hydroxypyrazole의 tautomerism에 대한 정량적 계산연구가³ 최근에 발표되어 pyrazole 유도채들에 대한 관심이 고조되고 있다. 질소 헤테로 고리화합물의 tautomerism은 lactamlactim 관계로 설명되며 uracil, cytosine, thymine 등 생리활성이 있는 화합물에서 많이 다루어지고 있다.4

본 연구에서는 살균, 살충, 제초 또는 고분자의 불연성 강화효과가 잘 알려진 pyrazole의 유도채들인 1,2,4-triazolidine-3,5-dione(일반명: urazole, 1)과 1, 3,4-oxa(or thia)diazolidine-2,5-dione(2, 3) 화합물 의 tautomer들에 대해 분자궤도함수론을 이용한 계 산연구를 수행하였다.

계산방법

모든 계산은 C₁ 대칭하에서 완전한 구조 optimization에 의하여 이루어졌다. AM1과 PM3 방법은⁵ MOPAC version 6.0 package를 사용하였고 ab initio 계산은 Cray Y-MP C916 기종에서 작동되고 있는 GAUSSIAN 92를⁶ 사용하였다. 표준 3-21G split valence basis set를⁷ 사용하여 화합물들의 구조를 결 정하였고 또한 에너지들을 계산하였다. Lactim 형 태의 tautomer들에서 OH기에 있는 H 원자의 방향을 여러 가지 가능성에서 계산하여 가장 안정한 구조를 선택하였다.

결과 및 고찰

1,2,4-triazolidine-3,5-dione(1) 화합물. 계산에 사용된 tautomer들을 1a~1e로 표시하였다.

Ab initio에서 3-21G basis sets을 사용하여 결정 한 구조와 상대적 에너지를 *Table* 1에 요약하였고 이 때 사용된 원자들의 번호를 1a에 표시하였다.

Dilactam 형태인 la에서 N₁-N₂의 결합길이는 1.441Å으로 결정구조와⁸ 약 0.03Å 차이가 있는 것 으로 이것은 기체상태의 분자구조가 아닌 결정구조

Table 1. Optimized geometries of $1a \sim 1e$ tautomers in 3-21G basis set. The bond distances are in angstroms and the angles in degrees. The relative energies^e are listed in kcal/mol

	la	1b	1¢	Id	1e	Exp.
N ₁ -N ₂	1.441	1.441	1.443	1.458	1.430	1.410
N ₁ -C ₅	1.390	1.274	1.370	1.280	1.300	1.354
$N_{2}-C_{3}$	1.390	1.360	1.426	1.280	1.329	1.367
$C_3 - N_4$	1.382	1.400	1.411	1.370	1.308	1.378
N ₄ -C ₅	1.382	1.363	1.277	1.370	1.373	1.380
C3-O6	1.203	1.210	1.198	1.340	1.331	1.232
C5-O7	1.203	1.336	1.323	1.339	1.338	1.237
$N_1 - N_2 - C_3$	107.9	112.8	106.3	105.8	108.8	107.7
$N_2 - N_1 - C_5$	107.9	102.5	103.0	105.7	100.8	108.3
$N_2 - C_3 - N_4$	104.8	102.0	106.5	112.4	111.2	106.3
$N_1 - C_5 - N_4$	104.8	114.1	115.8	112.4	116.0	106.6
$C_3 - N_4 - C_5$	113.5	108.5	107.3	103.6	103.2	110.2
Rel. E	0.00	12.61	28.55	35.54	31.52	

^aThe total energy of 1a tautomer at 3-21G is -388.37852 hartrees.

의 데이터임을 고려하면 매우 근접한 결과이다. 5각 고리내의 N_1 -C₅와 N_2 -C₃ 결합길이가 1.390 Å으로 Hillier에³ 의한 3-Hydroxypyrazole 화합물의 lactam tautomer에 대한 ab initio 결과인 1.391 Å과 동일 하다. C-O 결합길이는 1.203 Ă으로 3-21G basis set으로 결정된 알데히드 화합물의 전형적인 C-O 결합길이 범위(약 1.21 Å)에 속한다.⁹ 결합각도에서 La의 제산결과와 실험결정구조의 가장 큰 차이는 C₃-N₄-C₅ 각도로 3.3°의 차이만을 보여줌으로 제산 의 정확성을 뒷받침하고 있다. Lb tautomer는 N_1

	1	a	16	10	1	d	le			
	AM1	PM3								
N ₁ -N ₂	1.395	1.464	1.356	1.409	1.365	1.469	1.322	1.348	1.345	1.388
N1-N5	1.453	1.447	1.358	1.338	1.415	1.438	1.375	1.354	1.379	1.356
N ₂ -C ₃	1.465	1.446	1.420	1.417	1.448	1.466	1.376	1.355	1.404	1.380
C ₃ -N ₄	1.418	1.431	1.426	1.436	1.444	1.454	1.408	1.405	1.369	1.370
N₄-C₅	1.418	1.432	1.413	1.413	1.353	1.327	1.408	1.405	1.422	1.404
C3-O6	1.235	1.215	1.241	1.222	1.236	1.207	1.369	1.353	1.367	1.348
C5-O7	1.235	1.215	1.369	1.348	1.366	1.340	1.370	1.353	1.378	1.342
$N_{1}-N_{2}-C_{3}$	107.6	106.8	113.0	110.6	106.8	106.7	108.6	108.8	110.3	109.2
$N_2 - N_1 - C_5$	107.4	106.6	105.1	106.5	103.9	102.9	108.5	108.8	103.8	105.2
N_2 - C_3 - N_4	107.3	106.5	104.1	104.2	108.7	106.4	110.1	109.0	110.5	109.2
$N_1 - C_5 - N_4$	107.3	106.6	112.2	111.3	115.2	114.2	110.1	108.9	114.1	111.8
C3-N₄-C₅	108.5	109.9	105.7	107.0	103.8	107.4	102.6	104.5	101.4	104.7
Rel. E	0.00		7.86		17.44		12.42		17.01	
		0.00		4.10		12.53		11.18		10.03

Table 2. Optimized geometries of $1a \sim 1e$ tautomers in AM1 and PM3. The bond distances are in angstroms and the angles in degrees. The relative energies⁶ are listed in kcal/mol

"The heat of formation of 1a tautomer at AM1 and PM3 are -16.78 and -48.23 kcal/mol, respectively.

위치의 수소가 O₇ 위치로 이동한 lactam-lactim 형 태이다. 계산으로 결정된 구조에서 la와 차이를 보 여주는 데이터는 N₁-C₅와 C₅-O₇ 결합길이다. 1b tautomer에서 N₁-C₅는 1.274 Å으로 la에 비하여 0.116Å 짧아집으로 이중결합의 성격을 나타내고 있는 반면 C₅-O7 결합길이는 0.133Å 중가한 1.336 Å으로 결정되어 lactim 형태 형성에 의한 C-O의 단일결합을 의미한다. Hillier의 ab initio 결과인 lactim tautomer에서 C-O 결합길이인 1.35 Å과³ 또는 uracil, cytosine tautomer들 중에서 lactim 형태에 서의 C-O 결합길이안 ~1.34 Å과™ 비슷한 결과이다. 3-21G basis set을 사용한 urazole의 ab initio 결과인 Table 1에서 N-C의 단일결합 성격은 평균적으로 1.38 Å 그리고 이중결합 성격은 1.29 Å으로 단일결 합보다 0.09 Å이 짧게 결정되었다. Lactam 형태의 C-O 길이는 평균적으로 1.20 Å이고 lactim 형태의 C-O는 1.33 Å으로 lactam 형태보다 0.13 Å 길다. 에너지면에서는 dilactam 형태인 18가 다른 tautomer에 비해 가장 안정한 결과로 실험적으로 얻은 결정구조와⁸ 일치하고 있다. Hydrazyl proton(즉, N₁ 또는 N₂에 결합된 proton)이 산소원자로 위치를 옮긴 lb tautomer가 la보다 12.61 kcal/mol 불안정한 상 태이지만 다른 tautomer들보다는 훨씬 안정된 에너 지를 지니고 있다. 1b가 imide proton (N₄에 결합된 proton)의 자리바꿈에 의해 생성되는 lc tautomer 보다 약 16.0 kcal/mol 더 안정된 결과를 얻었다. 이와 같은 계산결과는 urazole의 산성도에 대한 연구에서 hydrazyl proton이 imide proton에 비하여 더 산성 이라는 실험결과와¹¹ 연관성을 가질 것으로 생각된다. Semi-empirical 방법인 AM1과 PM3의 계산결과 를 Table 2에 요약하였다.

AM1과 PM3 level에서도 가장 안정한 tautomer는 la로 나타났고 이 때의 생성열은 각각 ~16.78과 -48.23 kcal/mol로 계산되었다. AM1에서 N₁-N₂ 결 합길이는 1.395 Å으로 3-21G basis set의 ab initio 결과보다 짧으나 X-ray 결정구조의 1.410 Å에 매우 근접하다. 그러나 PM3 방법에서는 1.464 Å으로 비 교적 길게 결정되었다. 일반적으로 AM1의 결과에서 la에 대한 N-C 결합길이는 3-21G보다 길어졌으며 결합길이의 차이가 0.047 Å(N2-C3; 1.465 Å, C3-N4; 1.418Å)으로 3-21G의 0.008Å에 비해 크다. 이와 같은 결합길이의 차이는 AM1에서 5각 고리에서 전자가 편재화된 상태로 conjugation의 약화를 의미 한다. Tautomer들에서의 N₁-N₂ 결합길이가 AM1인 경우 PM3나 3-21G보다 짧게 나타나므로(평균 N-N 결합길이: AM1; 1.36 Å, PM3; 1.42 Å, 3-21G; 1.44 Å) 질소 원자간의 결합성질에 대하여 AM1이 다른 방법에 비하여 강조되고 있음을 알 수 있다. 보편

Fig. 1. Relative energies of the $1a \sim 1e$ tautomers in ab initio, AM1, and PM3 levels.

적으로 모든 tautomer들에 대한 AM1과 PM3 결과는 3-21G 결과보다 N-N을 제외한 결합길이에서 약 0.05Å정도 길개 결정되었다. 상대적 안정도는 3-21 G 결과와 동일하게 AM1과 PM3에서 1a>1b 순서를 보이지만 그 이외의 1c, 1d, 1e tautomer에서는 상 이한 경향을 보여주고 있다. Table 1에서 주어진 것같이 1c, 1d, 1e들에 대한 에너지 차이가 작게 나타나는 결과는 역시 semi-empirical의 Table 2에 서도 마찬가지다. Tautomer들에 대한 상대적 에너 지를 Fig. 1에 그래프로 정리하였다. Tautomer들에 대한 정확한 상대적 에너지 차이를 결정하기 위해 서는 좀 더 high level의 연구가 요구된다.

1,3,4-oxa(or thia) diazolidine-2,5-dione(2, 3) 화합물. 2,3 화합물은 urazole(1)에서 imide 부분 (NH 부분)을 산소나 황원자로 치환한 등전자관계를 이루고 있다. 계산에 사용된 tautomer들을 2a~2c, 3a~3c로 표시하였고 세 가지 종류의 계산방법으로 연구하였다.

방향족 화합물에서 탄소-탄소 이중결합을 황 또는 산소원자로 치환하면 이 화합물도 역시 방향족 성 질을 지니게 되는 것은 잘 알려진 사항이다. 예를 들면 벤젠(4)과 Thiophene(5)의 관계와 같다. 이와

Table 3. Optimized geometries of $2a \sim 2c$ and $3a \sim 3c$ tautomers in 3-21G basis set. The bond distances are in angstroms and the angles in degrees. The relative energies^a are listed in kcal/mol

	2a	2b	2c	3a	3b	3c
N ₁ -N ₂	1.439	1.441	1.474	1.422	1.413	1.437
N₁−C₅	1.383	1.267	1.269	1.364	1.257	1.262
N ₂ -C ₃	1.383	1.354	1.269	1.364	1.355	1.262
C3-X1	1.384	1.416	1.372	1.857	1.887	1.813
X₄-C₅	1.384	1.355	1.372	1.856	1.805	1.813
C3-O6	1.186	1.190	1.322	1.195	1.195	1.337
C5-O7	1.186	1.321	1.322	1.195	1.338	1.337
$N_1 - N_2 - C_3$	107.7	112.4	105.1	116.3	119.8	112.5
$N_2 - N_1 - C_5$	107.7	102.3	105.1	116.3	110.7	112.5
N ₂ -C ₃ -X ₄	105.9	102.9	113.8	108.1	105.6	116.0
N₁-C₅-X₄	105.1	115.6	113.8	108.1	117.4	116.0
C3-X4-C5	111.8	106.9	102.2	90.6	86.5	83.0
Rel. E	0.00	12.17	36.40	0.00	4.91	24.94

*The total energies of 2a and 3a tautomers at 3-21G are -408.07631 and -729.16074 hartrees, respectively.

같은 맥락에서 보면 2c나 3c 화합물은 3,6-dihydroxypyridazine(6)의 유사체로 볼 수 있으며 화학적 성 질이 매우 유사할 것으로 기대된다.

위에 주어진 원자들의 번호를 사용하여 3-21G level에서 계산된 결과들을 *Table* 3에 요약하였다.

2a와 3a의 dilactam tautomer가 가장 안정한 예 너지를 보여주고 다음으로 lactam-lactim의 2b, 3b가 두번째로 그리고 dilactim tautomer인 2c, 3c가 가장 불안정한 결과로 계산되었다. 이 에너지 순서는 urazole(1)에 대한 ab initio, AM1 그리고 PM3 levels의 계산결과와 일치한다. 1,3,4-oxadiazolidine-2.5dione(2) 화합물의 상대적 에너지 차이는 urazole과 비슷한 경향을 보여주고 있는 반면 황원자가 포함된 3 화합물에서는 3a와 3b의 에너지 차이가 4.91 kcal/mol로서 작다. 이 결과가 황화합물의 고유성질 에 기인된 것인지 또는 계산방법상의 문제인지는

Table 4. Tautomerization energies (kcal/mol) of 3,6dihydroxypyridazine **6a~6c**^a

	6a	бb	бс
MNDO	28.6	15.0	0.0
AM1	13.1	5. 9	0.0
PM3	4.8	2.6	0.0
3-21G	2.0	0.0	8.9

확실하지가 않다. 보편적으로 황원소를 포함하는 화 합물들에 대한 계산에서는 basis set의 적절한 선택 이 중요하며 post-Hartree Fock의 정량적인 계산이 이루어지고 있다.¹² 2, 3 화합물의 간접적 비교대상인 6 화합물에서는 다음과 같이 3가지의 tautomer들이 가능하고 Table 4에 이미 발표된¹³ 상대적 에너지들 을 정리하였다.

Lactam-lactim tautomer인 60가 ab initio 연구 에서 가장 안정한 형태로 계산되었으나 이것은 AM1, PM3의 6c tautomer가 가장 안정한 결과와 불일치 하고 있다. 그러나 수용액 상태에 대한 UV spectroscopy, X-ray에 의한 고체상태 그리고 IR에 의한 기 체상태의 구조연구에서" 모두 6b tautomer로 존재 한다는 것이 밝혀짐으로 ab initio의 계산만이 일치 하고 있다. 질소원자의 비공유전자쌍이 이웃에 인접 해 있는 화합물들에 대한 구조의 안정도에 대한 계 산에서 semi-empirical 방법은 약간 과대평가를 함 으로 예너지 차이가 작은 tautomer들간의 적절한 순서결정에는 문제점이 존재한다는 것이 알려졌다.¹⁵

 Table 3의 ab initio 계산에서 2 화합물 tautomer들에 대한 N₁-N₂ 결합길이는 등전자 관계에 있 는 1 화합물과 비슷하게 평균적으로 1.45 Å인 반면 3 화합물에서는 약간 짧은 1.42 Å이다. N-C의 평균 단일결합은 2와 3 화합물에서 각각 1.37과 1.36 Å 으로 1 화합물의 1.38 Å과 거의 동일하다. 또한 N =C 이중결합은 단일결합에 비하여 약 0.10 Å 감소

Table 5. Optimized geometries of $2a \sim 2c$ and $3a \sim 3c$ tautomers in AM1. The bond distances are in angstroms and the angles in degrees. The relative energies^e are listed in kcal/mol

	2a	2b	2c	3 a	3b	3c
N ₁ -N ₂	1.394	1.361	1.331	1.376	1.335	1.302
N_1 - C_5	1.450	1.338	1.354	1.430	1.338	1.361
N_2-C_3	1.451	1.404	1.354	1.431	1.413	1.360
C3-X4	1.407	1.420	1.406	1.773	1.790	1.734
X ₄ -C ₅	1.407	1.410	1.406	1.773	1.744	1.734
C3-O6	1.219	1.203	1.346	1.231	1.233	1.362
$C_5 - O_7$	1.219	1.203	1.346	1.230	1.363	1.362
$N_1 - N_2 - C_3$	107.1	112.7	107. 9	113.1	118.3	113.2
$N_2 - N_1 - C_5$	107.3	104.4	107.9	113.0	110.3	112.8
N ₂ -C ₃ -X ₄	108.8	105.0	111.8	109.5	106.9	113.9
$N_1 - C_5 - X_1$	108.8	113.6	111.8	109.5	115.9	114.1
C3-X4-C5	107.2	104.3	100.6	91.6	88.6	86.0
Rel. E	0.00	10.40	19.04	2.71	0.00	4.31

"The Heat of Formation of **2a** and **3b** tautomers at AM1 are -66.71 and -21.88 kcal/mol, respectively.

하였다. 3 화합물의 tautomer들에서 C-S 결합길이인 1.805~1.887 Å은 다양한 황화합물(즉, Thiophene, Thiirane, Methanethiol ··· 등)에 대한 3-21G basis set의 제산결과인 1.797~1.934 Å의⁹ 범주안에 속하 고 있다. AM1과 PM3 방법에 의한 계산결과를 Table 5와 6에 요약하였다.

2 화합물에 대한 계산에서 AM1과 PM3 방법에서 모두 dilactam 형태인·2a tautomer가 가장 안정하며 생성열은 각각 -66.71, -86.84 kcal/mol로 앞에서 언급한 urazole과 동일하게 PM3 방법에서 생성열이 더 크게 계산되었다. 2, 3 화합물의 tautomer들에 대한 상대적 에너지 크기를 각각 Fig. 2와 3에 도식 하였다.

2 화합물의 tautomer들에 대한 안정도는 2a>2b> 2c 순서로 ab initio, AM1 그리고 PM3의 방법들에서 모두 일치하고 있다. 그러나 황원자를 포함한 3 화 합물에 대한 계산은 약간 상이한 결과를 보여주고 있다. AM1으로는 lactam-lactim 형태의 3b tautomer가 dilactam의 3a에 비해 2.71 kcal/moi 더 안 정한 것으로 계산되었다. 그러나 PM3는 반대로 3a 가 3b보다 1.91 kcal/moi 더 안정한 상태로 안정도 순서에서는 ab initio의 결과와 일처하고 있다. AM1 의 3b와 PM3의 3a tautomer에 대한 생성열은 각각

Table 6. Optimized geometries of $2a \sim 2c$ and $3a \sim 3c$ tautomers in PM3. The bond distances are in angstroms and the angles in degrees. The relative energies^e are listed in kcal/mol

	2.8	2b	2c	3a	3b	3c
N ₁ -N ₂	1.462	1.417	1.373	1.452	1.387	1.350
N ₁ -C ₅	1.448	1.323	1.338	1.445	1.328	1.342
N_2-C_3	1.447	1.410	1.338	1.444	1.429	1.342
C3-X4	1.388	1.405	1.378	1.825	1.842	1.788
X4-C5	1.389	1.384	1.378	1.824	1.788	1.787
C3-O6	1.203	1.208	1.336	1.209	1.121	1.350
Cs-O7	1.203	1.335	1.336	1.209	1.349	1.350
$N_1 - N_2 - C_3$	105.3	109.7	107.1	112.3	115.7	113.0
$N_2 - N_1 - C_5$	105.0	105.1	107.1	111.8	112.0	112,9
$N_2 - C_3 - X_4$	108.6	105.4	111.2	110.3	108.5	114.9
$N_1 - C_5 - X_4$	108.7	113.2	111.3	110.5	116.6	115.0
C3-X4-C5	109.1	106.7	103.2	90.6	87.2	84.2
Rel. E	0.00	5.86	16.44	0.00	1.91	11.96

Fig. 2. Relative energies of the $2a \sim 2c$ tautomers in ab initio, AM1, and PM3 levels.

-21.88과 -27.54 kcal/mol로 계산되었다. 2와 3 화합물들에 대한 간접적인 비교대상으로 앞에서 언 급한 6 화합물의 구조에 관한 여러 가지 실험과 ab initio 결과로 lactam-lactim tautomer가 가장 안정 하다는 것이 알려졌다. 그러나 6 화합물에서는 6각 고리에서 파이전자들의 비편재화에 의한 aromaticity가 크게 작용하는 반면 탄소-탄소 이중결합을 O 또는 S로 치환한 5각 고리 화합물에서는 고리내의 aromaticity가 감소할 것이라는 것은 쉽게 짐작할 수 있다. 이런 사실은 tautomer들간의 에너지 차이가 근소하다면 안정도의 순서에 영향을 미칠 것이다.

Fig. 3. Relative energies of the $3a \sim 3c$ tautomers in ab initio, AM1, and PM3 levels

산소가 포함된 2 화합물에서는 tautomer들간의 에 너지 차이가 비교적 크게 나타나고 또한 본 연구에서 적용한 세 가지의 계산방법에 대해서도 일관성을 보여주고 있다. 반면 황원자를 포함한 3 화합물에 서는 3a와 3b의 에너지 차이가 근소하므로 계산방 법에 따라 영향을 받는다. 2와 3 화합물이 서로 다른 성질을 보여주고 있는 것은 산소와 황 원소간의 상 이한 nucleophilicity와 전자주게 성질에서 기인된 것이다. 3 화합물의 tautomer들에 대한 안정도 순 서를 정확히 연구하기 위해서는 high levet의 재산 즉 큰 basis set과 post-HF의 연구가 요구된다.

분자구조면에서는 Table 5와 6의 N₁-N₂ 결합길 이가 공통적인 경향성을 띠고 있다. 결합길이가 a, b, c tautomer 순서로 감소하는 (즉, AM1에서 2a; 1.394, 2b; 1.361, 2c; 1.331Å) 현상은 dilactam(2a) 에서 dilactim(2c)으로 변함으로 5각 고리에 파이전 자들의 비편재화 성질이 증가하므로 N-N 길이의 감소를 유발하고 있다. N-C나 C-O(Carbonyl 또는 Hydroxy group)의 결합길이는 앞에서 설명한 urazole의 경우와 비슷한 경향을 보여주고 있다.

결 톤

Pyrazole의 유도체들인 1,2,4-triazolidine-3,5dione(1)과 1,3,4-oxa(or thia) diazolidine-2,5-dione (2, 3) 화합물의 lactam-lactim tautomer들을 ab initio, AM1 그리고 PM3 방법들을 이용하여 연구하 였다.

1 화합물은 여러 종류의 tautomer들 중에서 dilac-

tam 형태인 1a가 가장 안정함을 세 가지 방법에서 모두 동일하게 계산되었다. 3-21G basis set를 사 용한 ab initio에서 la는 N1-N2 결합길이가 X-ray 결정구조와 단지 0.03Å 차이만을 나타나며 다른 결합길이나 결합각도도 결정구조와 상당히 비슷한 결과를 얻었다. AM1과 PM3 구조는 ab initio 결과에 비하여 결합길이의 변화가 약간 크지만 lactam 형 태에서 N-C, C=O 결합길이와 lactim 형태의 N=C, C-O 결합길이가 단일결합과 이중결합의 차이를 분 명히 보여주고 있다. 두번째로 안정한 tautomer는 lactam-lactim 형태의 1b로 계산방법에 따라 1a보다 4.10~12.60 kcal/mol 정도 불안정한 것으로 계산되 었다. 그러나 이외의 tautomer들에 대한 안정도 순 서는 계산방법에 의존하고 정확한 순서를 결정하기 위해서는 더 큰 basis set이나 post-HF의 계산이 요구된다.

5각 고리내에 산소원자를 포함하고 있는 2 화합 물은 제산방법에 무관하게 2a>2b>2c 순서로 일치 된 안정도를 보여준다. 그러나 황을 포함하고 있는 3 화합물은 tautomer들간의 상대적 에너지 차이가 작아 안정도 순서가 계산방법에 의존된다. Ab initio와 PM3에서는 3a>3b>3c 순서인 반면 AM1에 서는 3b>3a>3c의 안정도를 보여주고 있다. Semiempirical에 의한 구조에서 dilactam에서 dilactim 형태로 변함에 따라 N₁-N₂ 결합길이가 감소하고 이것은 5각 고리의 과이전자들이 비편재화됨으로 질소원자간의 결합이 강화됨을 의미한다.

이 논문은 1993년도 한국학술진흥재단의 대학부 설연구소 연구파제 연구비 및 공모파제 연구비의 일부에 의하여 연구된 것으로 이에 감사를 드립니다.

인 용 문 헌

- (a) Lapinski, L.; Nowak, M. J.; Les, A.; Adamowicz, L. J. Am. Chem. Soc. 1994, 116, 1461. (b) Ha, T.-K.; Gunthard, H. H. J. Am. Chem. Soc. 1993, 115, 11939. (c) Katritzky, A. R.; Karelson, M. J. Am. Chem. Soc. 1991, 113, 1561. (d) Albert, A.; Taylor, P. J. J. Chem. Soc., Perkin Trans. 1989, 11, 1903.
- (a) Cox, J. R.; Woodcock, S.; Hillier, I. H.; Vincent, M. A. J. Phys. Chem. 1990, 94, 5499. (b) Catalan, J.; Sanchez-Cabezudo, M.; de Paz, J. L. G.; El-

guero, J.; Taft, R. W.; Anvia, F. J. Comp. Chem. 1989, 10, 426.

- Parchment, O. G.; Green, D. V. S.; Taylor, P. J.; Hillier, I. H. J. Am. Chem. Soc. 1993, 115, 2352.
- (a) Leszczynski, J. J. Phys. Chem. 1992, 96, 1649.
 (b) Fabian, W. M. F. J. Comp. Chem. 1991, 12, 17.
 (c) Les, A.; Adamowicz, L. J. Phys. Chem. 1990, 94, 7021.
- (a) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902.
 (b) Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209.
- Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.: Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. *Gaussian-92*; Gaussian, Inc.: Pittsburgh, PA., 1992.
- Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939.
- 8. Belaj, F. Acta Cryst. 1992, C48, 1088.
- Hehre, W. J.; Radom, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; John Wiley & Sons: New York, U. S. A., 1986.
- Scanlan, M. J.; Hillier, I. H. J. Am. Chem. Soc. 1984, 106, 3737.
- (a) Bausch, M. J.; Selmarten, D.; Gostowski, R.; Dobrowolski, P. J. Phys. Org. Chem. 1991. 4, 67.
 (b) Bausch, M. J.; David, B.; Dobrowolski, P.; Guadalupe-Fasano, C.; Gostowski, R.; Selmarten, D.; Prasad, V.; Vaughn, A.; Wang, L.-H. J. Org. Chem. 1991, 56, 5643.
- (a) Quelch, G. E.; Schaefer III, H. F.; Marsden,
 C. J. J. Am. Chem. Soc. 1990, 112, 8719. (b) Kang,
 S. K.; Ahn, B. G. Bull. Korean Chem. Soc. 1994, 15, 658. (c) Kang, S. K.; Ahn, B. G.; Choi, E. S.
 Bull. Korean Chem. Soc. 1994, 15, 996.
- Fabian, W. M. F. J. Mol. Struct. (Theochem) 1990, 206, 295.
- (a) Barlin, G. B. J. Chem. Soc., Perkin Trans. II 1974, 1199.
 (b) Cradwick. J. Chem. Soc., Perkin Trans. II 1976, 1386.
 (c) Lippert, B.; Fritz, H. P.; Burkert, P. Chem. Ber. 1979, 108, 478.
- (a) Sanz, J. F.; Anguiano, J.; Vilarrasa, J. Comp. Chem. 1988, 9, 784. (b) Ritchie, J. P. J. Org. Chem. 1989, 53, 3553.