Acid Etching of Sapphire Substrate for Hetero-Epitaxial Growth

Hetero-Epi막 성장용 사파이어 기판의 산에칭

  • Kim, Hyang Sook (Solid State Chemistry Lab., Korea Research Institute of Chemical Technology) ;
  • Hwang, Jin Soo (Solid State Chemistry Lab., Korea Research Institute of Chemical Technology) ;
  • Chong, Paul Joe (Solid State Chemistry Lab., Korea Research Institute of Chemical Technology)
  • 김향숙 (한국화학연구소 고체화학실) ;
  • 황진수 (한국화학연구소 고체화학실) ;
  • 정필조 (한국화학연구소 고체화학실)
  • Published : 19950100

Abstract

The surface of a sapphire substrate used for hetero-epitaxy was chemically polished in a mixture of $H_3PO_4\;and\;H_2SO_4$ solution. The extent of etching for various crystal orientations was found to be dependent on the etching time at $315{\pm}2^{\circ}C$ and at the composition of $H_2SO_4 : H_3PO_4$=3 : 1. In addition, the etching rates of the substrates were investigated in the mixture of $H_2SO_4 : H_3PO_4$=3 : 1 by volume and in the temperature range of 280~320$^{\circ}C$. From the plot of log R against 1/T, the activation penergy ($(E_a)$) was found to be in the order of $({\bar1}012) > (10{\bar1}0) > (11{\bar2}0) > (0001)$ plane. After removing the surface layers of the sapphire with (0001), $({\bar1}012),\;(10{\bar1}0)\;and\;(11{\bar2}0)$ plane by a thickness of 64.6, 46.5, 16.2 and 5.1 ${\mu}m$, respectively, the morphology of the resulting surface was observed by SEM.

단결정 적층막을 제조하기 위해 사용되는 사파이어 기판에 대하여 황산과 인산의 혼합용액 화학적 에칭을 조사하였다. 여러가지 배향면의 사파이어에 대한 에칭정도는 황산과 인산의 3:1 조성과 $315{\pm}2^{\circ}C$에서 에칭시간에 의존하였다. 280~320$^{\circ}C$ 범위에서 30분간씩 산에칭시킨 후에 에칭속도(R)를 구하였고, log R에 대한 $1/T$ semilog plot로부터 활성화에너지$(E_a)$를 구하였으며, 그것은 $({\bar1}012) > (10{\bar1}0) > (11{\bar2}0) > (0001)$면 순서로 감소하였다. 한편 (0001), $({\bar1}012),\;(10{\bar1}0)$$(11{\bar2}0)$면의 표층 두께를 각각 64.6, 46.5, 16.2와 5.1 ${\mu}m$ 에칭시킨 후의 기판 표면을 SEM으로 관찰하였다.

Keywords

References

  1. Progr. Crystal Growth Characterization v.17 Elwell, D.;Elwell, M. M.
  2. J. Crystal Growth v.66 Karpinski, J.;Jun, J.;Porowski, S.
  3. J. Cryst. Growth v.9 Wickenden, D. K.;Faulkner, K. R.;Brander, R. W.
  4. Journal of Luminescence v.7 Pankove, J. I.
  5. J. Cryst. Growth v.13/14 Ilegems, M.
  6. Izv. Akad Nauk USSR, Ser. Phys. v.37 Bagdasarov, K. S.;Dobrovinskaya, E. R.;Litvinov, L. A.;Pishchik, V. V.
  7. J. Electrochem. Soc. v.118 no.11 Vardiman, R. G.
  8. J. Electrochem. Soc. v.118 no.10 Reisman, A.;Berdenblit, M.;Cuomo, J.;Chan, S. A.
  9. RCA Review Robinson, P. H.;Wance, R. O.
  10. J. Appl. Phys. v.40 Wang, C. C.
  11. Soviet Phys. Cryst. (English Trans.) v.13 Zeveke, T. A.;Kornev, L. M.;Tolomasov, V. A.
  12. J. Electrochem. Soc. v.114 Faktor, M. M.;Fiddyment, D. G.;Hewns, G. R.
  13. J. Electrochem. Soc. v.114 no.2 Manasevit, H. M.;Morritz, F. L.
  14. J. Electrochem. Soc. v.115 no.4 Manasevit, H. M.
  15. J. Electrochem. Soc. v.121 no.2 Manasevit, H. M.
  16. J. Am. Ceram. Soc. v.43 Scheulplein, R.;Gibbs, P.
  17. Crystal Res. and Technol. v.17 no.3 Marasina, L. A.;Malinovsky, V. V.;Pichugin, I. G.;Prentky, P.
  18. Kristall and Technik v.12 no.10 Kalinski, Zb.
  19. J. Res. Nat. Bur. Stds. v.69A Barber, D. J.;Tighe, N. J.
  20. J. Am. Ceram. Soc. v.46 Alford, W. J.;Stephens, D. L.
  21. Crystal Structure Wyckoff, W. G.