N'-aryl-N-alkyl-N-nitrosourea 유도체의 환원반응에 대한 전기화학적 거동

Electrochemical Behaviors for Cathodic Reaction of N'-aryl-N-alkyl-N-nitrosourea Drivatives

  • 원미숙 (기초과학지원연구소 부산분소) ;
  • 김정균 (부산대학교 자연과학대학 화학과) ;
  • 정의덕 (부산대학교 자연과학대학 화학과) ;
  • 심윤보 (부산대학교 자연과학대학 화학과)
  • Won, Mi Sook (Pusan Branch, Korea Basic Science Institute, Pusan National University) ;
  • Kim, Jack C. (Department of Chemistry, Pusan National University) ;
  • Jeong, Euh Duck (Department of Chemistry, Pusan National University) ;
  • Shim, Yoon-Bo (Department of Chemistry, Pusan National University)
  • 발행 : 19951100

초록

유리질 탄소전극을 사용하여 조사한 몇가지 N'-aryl-N-alkyl-N-nitrosourea 유도체들의 전기화학적 환원반응은 확산지배적이고 비가역적인 반응이었다. 이들 유도체들의 환원 반응시의 교환속도 상수 $k_0$값은 $1.48{\times}10^{-6}{\sim}5.32{\times}10^{-7}\;cm/sec.$의 값을 나타내었었다. Aryl기 및 alkyl기의 치환기에 따른 교환속도상수는 $k_0$ N'-aryl-N-alkyl-N-nitrosourea 에서 aryl기가 phenyl일 경우, 다른 치환기보다 $k_0$값이 1.3-2.8배였다. N'-aryl-N-alkyl-N-nitrosourea 와 N'-aryl-N-(2-chloroethyl)-N-nitrosourea의 두 화합물에서 aryl기의 치환기가 같을 경우는 비슷한 값을 나타내었다. N'-aryl-N-methyl-N-nitrosourea 유도체는 pH값이 높아짐에 따라 $E_p$값이 음전위쪽으로 이동하며 각 환원 반응에 참여한 $H^+$의 수는 4-5개였다. 이경우 aryl기의 치환기 효과는 환원전위에 크게 영향을 미치지 않는 것으로 나타났다.

The electrochemical reduction reactions of N '-aryl-N-alkyl-N-nitrosourea derivatives with a glassy carbon electrode were diffusion controlled and irreversible. The exchange kinetic constant ko values for reduction reaction of the N '-aryl-N-alkyl-N-nitrosoureas were at the range of $1.48{\times}10^{-6}{\sim}5.32{\times}10^{-7}\;cm/sec.$ The $k_0$ values for phenyl substituted on the aryl position were about 1.3∼2.8 times higher than that of other substituents. The same substituent for aryl groups on the both of N '-aryl-N-alkyl-N-nitrosourea and N '-aryl-N-(2-chloroethyl)-N-nitrosourea exhibited same value. The $E_p$ value was shifted to the negative direction as pH increased. The number of protons participated to the reduction was 4∼5, respectively. The substituent effect of aryl group on the reduction potential was not observed in this case.

키워드

참고문헌

  1. J. Electroanal. Chem. v.27 Borghessani, G.;Pulidori, F.;Pedrialli, R.
  2. Rocz. Chem. v.32 Kemula, W.;Kublik, Z.
  3. Anal. Chem. v.37 Nichoson, R. S.;Shain, I.
  4. J. Med. Chem. v.6 Johnston, T. P.;McCaleb, G. S.;Montgometry, J. T.
  5. J. Med. Chem. v.9 Johnston, T. P.;McCaleb, G. S.;Opliger, P. S.;Montgometry, J. T.
  6. Cancer Chemistry Wheeler, G. D.;Sartorelli, A. C.
  7. Cancer Rev. v.32 Cheng, C. J.;Fujimura, S.;Grunberger, D.;Weistein, I. B.
  8. Medical Chemisty Montgomery, J. A.;Johnston, T. P.;Shealy, Y. F.;Burger, A.
  9. Top. Curr. Chem. v.52 Connors, T. A.
  10. Cancer Treat. Rep. v.60 Montgomery, J. A.
  11. J. Med. Chem. v.24 Haey-Shin Lin;Robert, J. Weinkam
  12. J. Org. Chem. v.48 J. William Lown;Shive M. S. Chauhan
  13. Bull. Soc. Chim. France Laviron, E.;Fournari, P.
  14. Chem. Listy v.51 Zharandik, K.;Svatek, E.
  15. J. Am. Chem. Soc. v.86 Lemal, D. M.;Menger, F.
  16. Acta. Chem. Scand. v.21 Christian, S. D.;Klaebae, P.
  17. Chem. Abstr. v.60 Whitnack, G. C.;Weavr, R. D.;Kruse, H. W.
  18. J. Chem. Abstr. v.56 Schmidt, H.
  19. Cohen. Chem. Abstr. v.56 Desseigne, C.
  20. Chem. Abstr. v.54 Schmidt, H. J.;Nees, H.
  21. Chem. Abstr. v.54 Horwitz, D.;Cervonka, E.
  22. J. Phys. Chem. v.36 Cook, E. W.;France, W. G.
  23. Acta. Chem. Scand. v.25 Iversen, P. E.
  24. Acta. Chem. Scand. v.24 Iversen, P. E.
  25. J. Pharm. Soc. Korea v.27 Kim, J. C.;Cho, I. S.
  26. Arch. Pharm. Res. v.6 Kim, J. C.;Kim, M. S.;Lee, H. K.
  27. J. Kor. Chem. Soc. v.35 Kim, J. C.;Cho, I. S.;Choi, S. K.
  28. J. Kor. Chem. Soc. v.35 Won, M. S.;Kim. J. C.;Shim, Y. B.
  29. Bull. Korean Chem. Soc. v.13 Won, M. S.;Kim, J. C.;Shim, Y. B.
  30. Electrochemical Method Bard, A. J.;Faulkner, L. R.
  31. Electrochemical Method Bard, A. J.;Faulkner, L. R.
  32. Physik. Chem.(Leipzig) v.195 Vetter, K. J.;Manecke, G. Z.
  33. Talanta v.15 Harrison, L. W.;Cheny, G. E.
  34. Electrochimica Acta v.27 Jacob, G.;Monet, C.;Tallec, A.