DOI QR코드

DOI QR Code

Rotational State Distribution of CO₂ after a Collision with H Atom

  • Published : 1995.07.20

Abstract

Based on the collisional time correlation function (CTCF) formalism, Kim and Micha derived a simple expression which gives nascent rotational state distribution of molecules after collision with fast atoms.32 The expression is valid when the collision time is short and the collision is impulsive in nature. This expression has been applied to analyze the experimentally measured, state resolved rotational distribution of CO2 in various types of vibrational levels, i.e., (0001), (0111), (0002), and (1000/0200). The theoretical distributions obtained from this CTCF based expression can represent the experimentally measured rotational distributions remarkably well, and have been found to be much superior to those obtained from other simple theories such as Boltzmann distribution, prior distribution, breathing ellipsoid model, and phase space statistical calculation.

Keywords

References

  1. Annu. Rev. Phys. Chem. v.37 Flynn, G. W.;Weston Jr., R. E.
  2. Advances in Chemical Kinetics and Dynamics, Vol.2, Vibrational Energy Transfer Involving Large and Small Molecules v.2 Weston, Jr., R. E;Flynn, G. W.;barker, J. R.(Ed.)
  3. J. Chem. Phys. v.78 Wight, C. A.;Leone, S. R.
  4. J. Chem. Phys. v.88 Chawla, G. K.;Mcbane, G. C.;Houston, P. L.;Schatz, G. C.
  5. J. Chem. Phys. v.94 Mcbane, G. C.;Kable, S. H.;Houston, P. L.;Schatz, G. C.
  6. J. Chem. Phys. v.85 O'Neil, J. A.;Wang, C. X.;Cai, J. Y.;Flynn G.W.;Weston Jr., R. E.
  7. J. Chem. Phys. v.88 O'Neil, J. A.;Wang, C. X.;Cai, J. Y.;Flynn G. W.;Weston Jr., R. E.
  8. J. Phys. Chem. v.92 Khan, F. A.;Kreutz, T. G.;Zhu, L.;Lynn, G. W.;Weston Jr., R. E.
  9. J. Chem. Phys. v.92 Kreutz, T. G.;Khan, F. A.;Flynn, G. W.
  10. J. Chem. Phys. v.92 Khan, F. A.;Freutz, T. G.;Flynn, G. W.;Weston Jr., R. E.
  11. J. Chem. Phys. v.92 Kreutz, T. G.;Flynn, G. W.
  12. J. Chem. Phys. v.93 Khan, F. A.;Kreutz, T. G.;O'Neil, J. A.;Wang, C. X.;Flynn, G. W.;Weston Jr., R. E.
  13. J. Chem. Phys. v.93 Hewitt, S. A.;Herschberger, J. F.;Chou, J. Z.;Flynn, G. W.;Weston, Jr., R. E.
  14. J. Chem. Phys. v.98 Khan, F. A.;Kreutz, T. G.;Flynn, G. W.;Weston, Jr., R. E.
  15. J. Chem. Phys. v.87 Hewitt, S. A.;Herschberger, J. F.;Flynn, G. W.;Weston Jr., R. E.
  16. J. Chem. Phys. v.83 Wight, C. A.;Donaldson, D. J.;Leone, S. R.
  17. J. Chem. Phys. v.96 Lovejoy, C. M.;Goldfarb, L.;Leone, S. R.
  18. Faraday Discuss Chem. Soc. v.84 Schatz, G. C.;Fitzcharles, M. S.;harding, L. B.
  19. Selectivity in Chemical Reactions Schatz, G. C.;Fitzcharles, M. S.;Whitehead, J. C.(Ed.)
  20. J. Chem. Phys. v.54 Kinsey, J. L.
  21. Acc. Chem. Res. v.7 Levine, R. D.;Bernstein, R. B.
  22. Atom Molecule Collision Theory Levine, R. D.;Kinsey, J. L.;Bernstein, R. B.(Ed.)
  23. Chemical Dynamics via Molecular beam and Laser techniques Bernstein, R. B.
  24. J. Chem. Phys. v.42 Pechukas, P.;Light, J. C.
  25. Discuss. Faraday Soc. v.44 Light, J. C.
  26. Int. J. Quantum Chem. v.S20 Micha, D. A.
  27. Int. J. Quantum Chem. v.S15 Micha, D. A.
  28. J. Chem. Phys. v.70 Micha, D. A.
  29. J. Chem. Phys. v.70 Micha, D. A.
  30. Chem. Phys. Lett. v.46 Micha, D. A.
  31. Phys. Rep. v.212 Vilallonga, E.;Micha, D. A.
  32. Adv. Chem. Phys. v.LXXXIV Micha, D. A.;Vilallonga, E. F.
  33. J. Chem. Phys. v.90 Kim, Y. H.;Micha, D. A.
  34. Bull. Kor. Chem. Soc. v.16 Kim, Y. H.;Micha, D. A.
  35. Bull. Bas. sci. Inst. Inha Univ. v.16 Kim, Y. H.;Lee, Y. J.
  36. Numerical recipes-The Art of Scientific Computing Press, W. T.;Flannery, B. P.;Teukolsky, S. A.;Vettering, W. T.
  37. Numerical Recipes Example Book (Fortran) Vettering, W. T.;teukolsky, S. A.;Press, W. T.;Flannery, B. P.
  38. Chem. Phys. Lett. v.74 Clary, D. C.
  39. J. Chem. Phys. v.78 Clary, D. C.
  40. Chem. Phys. Lett. v.98 Alexander, M. H.;Clary, D. C.
  41. J. Chem. Phys. v.86 Banks, A. J.;Clary, D. C.
  42. J. Chem. Phys. v.88 Herschberger, J. F.;Hewitt, S. A.;Flynn, G. W.;Weston, Jr., R. E.