References
- Enzyme Structure and Mechanism Fersht, A.
- Quart. Rev. Biophys. v.17 Warcshel, A.;Russel, S.T.
- Mol. Pharmacol. v.29 Weinstein, A.;Mazurek, A.P.;Osman, R.;Topiol, S.
- Int. J. Quantum Chem. v.37 Pardo, L.;Mazurek, A.P.;Osman, R.
- J. Mol. Str. v.177 Hadzi, D.
- J. Mol. Str. v.201 Remko, M.
- J. Mol. Str. v.201 Lipinski, J.
- J. Am. Chem. Soc. v.103 Voogd, J.;Derissen, J.L.;Dujineveldt, F.B.
- Acc. Chem. Res. v.18 Sheiner, S.
- J. Phys. Chem. v.89 Del Bene, J.E.;Frisch, M.J.;Pople, J.A.
- J. Chem. Phys. v.84 Frisch, M.J.;Del Bene, J.E.;Binkley, J.S.;Schaefer Ⅲ H.F.
- J. Am. Chem. Soc. v.103 Kollman, P.A.;Hayes, D.M.
- J. Am. Chem. Soc. v.106 Bonaccorsi, R.;Palla, P.;Tomasi, J.
- J. Chem. Soc., Frad. Trans. v.84 Kokpol, S.U.;Doungdee, P.B.;Hannongbua, S.V.;Rode, B.M.;Limtrakul, J.P.
- Int. J. Quantum Chem. v.34 Ni, X.;Shi, X.;Ling, L.
- int. J. Quantum Chem. v.33 Mouchet, J.P.;Contreras, R.R.;Aziman, A.
- J. Mol. Str. v.198 Hodoscek, M.;Hadzi, D.
- J. Mol. Str. v.207 Kikuchi, O.;Natsui, T.;Kozaki, T.
- J. Am. Chem. Soc. v.113 Nasataka, M.;Okuno, Y.;Yamabe, T.
- J. Chem. Soc., Perkin Trans. 2 Rzepa, H.S.;Yi, M.
- Gaussian92 Revision A Frisch, M.J.;Trucks, G.W.;Head-Gordon, M.;Gill, P.M.W.;Wong, M.W.;Foresman, J.B.;Johnson, B.G.;Schlegel, H.B.;Robb, M.A.;Replogel, E.S.;Gomperts, R.;Andres, J.L.;Raghacvachari, K.;Binkley, J.S.;Gonzalez, C.;Martin, R.L.;Fox, D.J.;Defrees, D.J.;Baker, J.;Srewart, J.J.P.;Pople, J.A.
Cited by
- Determination of Potential Parameters for Amino Acid Zwitterions vol.100, pp.44, 1996, https://doi.org/10.1021/jp961180v
- The 1:1 glycine–water complex: some theoretical observations vol.618, pp.3, 1995, https://doi.org/10.1016/s0166-1280(02)00543-2
- On the Importance of CP-corrected Gradient Optimization in the Study of Hydrogen Bonded Systems vol.21, pp.12, 1995, https://doi.org/10.1002/cjoc.20030211214
- Molecular Interactions between Glycine and H2O Affording the Zwitterion vol.107, pp.39, 2003, https://doi.org/10.1021/jp030495p
- Molecular dynamics simulations of small glycine-(H2O)n (n=2-7) clusters on semiempirical PM6 potential energy surfaces vol.869, pp.1, 2008, https://doi.org/10.1016/j.theochem.2008.08.016
- Automated exploration of stable isomers of H+(H2O)n (n = 5–7) via ab initio calculations: An application of the anharmonic downward distortion following algorith vol.30, pp.6, 1995, https://doi.org/10.1002/jcc.21117
- Comprehensive Studies on the Free Energies of Solvation and Conformers of Glycine: A Theoretical Study vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1985
- Molecular dynamics and quantum chemical studies on incremental solvation of glycine vol.967, pp.1, 1995, https://doi.org/10.1016/j.comptc.2011.03.045
- A theoretical investigation of the relative stability of hydrated glycine and methylcarbamic acid—from water clusters to interstellar ices vol.14, pp.14, 1995, https://doi.org/10.1039/c2cp23798a
- Structuring and destructuring effects along a pathway toward formation of zwitterionic glycine···(H2O)2 complex: many body analysis of clusters and molecular vol.113, pp.9, 1995, https://doi.org/10.1002/qua.24287