DOI QR코드

DOI QR Code

Determination of the Proton Transfer Energies of Glycine and Alanine and the Influence of Water Molecules


Abstract

The proton transfer energies of gas phase glycine and alanine and those of hydrated glycine and alanine were calculated both with Hartree-Fock and $M{\Phi}ller-Plesset$ ab initio molecular orbital (MO) calculations with 6-31G** basis set. The transition states of the proton transfer of gas phase glycine was also investigated. For zwitterions, both for glycine and alanine, the water bound to -NH3+ site stabilize the complex more compared with the water bound to -CO2-. The proton transfer energy, ΔEpt, of glycine, alanine, mono-hydrated glycine, mono-hydrated alanine, di-hydrated glycine and di-hydrated alanine were obtained as 30.78 (MP2: 22.57), 31.43, 23.99 (MP2: 17.00), 24.98, 22.87, and 25.63 kcal/mol, respectively. The activation energy for proton transfer from neutral (Nt) glycine to zwitterion (Zw) glycine, Ea, was obtained as 16.13 kcal/mol and that for reverse process, Ear, was obtained as 0.85 kcal/mol. Since the transition state of the proton transfer of gas phase glycine locate near the glycine zwitterion on the potential energy surface and the shape of the potential well of the zwitterion is shallow, the zwitterion easily changed to neutral glycine through the proton transfer.

Keywords

References

  1. Enzyme Structure and Mechanism Fersht, A.
  2. Quart. Rev. Biophys. v.17 Warcshel, A.;Russel, S.T.
  3. Mol. Pharmacol. v.29 Weinstein, A.;Mazurek, A.P.;Osman, R.;Topiol, S.
  4. Int. J. Quantum Chem. v.37 Pardo, L.;Mazurek, A.P.;Osman, R.
  5. J. Mol. Str. v.177 Hadzi, D.
  6. J. Mol. Str. v.201 Remko, M.
  7. J. Mol. Str. v.201 Lipinski, J.
  8. J. Am. Chem. Soc. v.103 Voogd, J.;Derissen, J.L.;Dujineveldt, F.B.
  9. Acc. Chem. Res. v.18 Sheiner, S.
  10. J. Phys. Chem. v.89 Del Bene, J.E.;Frisch, M.J.;Pople, J.A.
  11. J. Chem. Phys. v.84 Frisch, M.J.;Del Bene, J.E.;Binkley, J.S.;Schaefer Ⅲ H.F.
  12. J. Am. Chem. Soc. v.103 Kollman, P.A.;Hayes, D.M.
  13. J. Am. Chem. Soc. v.106 Bonaccorsi, R.;Palla, P.;Tomasi, J.
  14. J. Chem. Soc., Frad. Trans. v.84 Kokpol, S.U.;Doungdee, P.B.;Hannongbua, S.V.;Rode, B.M.;Limtrakul, J.P.
  15. Int. J. Quantum Chem. v.34 Ni, X.;Shi, X.;Ling, L.
  16. int. J. Quantum Chem. v.33 Mouchet, J.P.;Contreras, R.R.;Aziman, A.
  17. J. Mol. Str. v.198 Hodoscek, M.;Hadzi, D.
  18. J. Mol. Str. v.207 Kikuchi, O.;Natsui, T.;Kozaki, T.
  19. J. Am. Chem. Soc. v.113 Nasataka, M.;Okuno, Y.;Yamabe, T.
  20. J. Chem. Soc., Perkin Trans. 2 Rzepa, H.S.;Yi, M.
  21. Gaussian92 Revision A Frisch, M.J.;Trucks, G.W.;Head-Gordon, M.;Gill, P.M.W.;Wong, M.W.;Foresman, J.B.;Johnson, B.G.;Schlegel, H.B.;Robb, M.A.;Replogel, E.S.;Gomperts, R.;Andres, J.L.;Raghacvachari, K.;Binkley, J.S.;Gonzalez, C.;Martin, R.L.;Fox, D.J.;Defrees, D.J.;Baker, J.;Srewart, J.J.P.;Pople, J.A.

Cited by

  1. Determination of Potential Parameters for Amino Acid Zwitterions vol.100, pp.44, 1996, https://doi.org/10.1021/jp961180v
  2. The 1:1 glycine–water complex: some theoretical observations vol.618, pp.3, 1995, https://doi.org/10.1016/s0166-1280(02)00543-2
  3. On the Importance of CP-corrected Gradient Optimization in the Study of Hydrogen Bonded Systems vol.21, pp.12, 1995, https://doi.org/10.1002/cjoc.20030211214
  4. Molecular Interactions between Glycine and H2O Affording the Zwitterion vol.107, pp.39, 2003, https://doi.org/10.1021/jp030495p
  5. Molecular dynamics simulations of small glycine-(H2O)n (n=2-7) clusters on semiempirical PM6 potential energy surfaces vol.869, pp.1, 2008, https://doi.org/10.1016/j.theochem.2008.08.016
  6. Automated exploration of stable isomers of H+(H2O)n (n = 5–7) via ab initio calculations: An application of the anharmonic downward distortion following algorith vol.30, pp.6, 1995, https://doi.org/10.1002/jcc.21117
  7. Comprehensive Studies on the Free Energies of Solvation and Conformers of Glycine: A Theoretical Study vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1985
  8. Molecular dynamics and quantum chemical studies on incremental solvation of glycine vol.967, pp.1, 1995, https://doi.org/10.1016/j.comptc.2011.03.045
  9. A theoretical investigation of the relative stability of hydrated glycine and methylcarbamic acid—from water clusters to interstellar ices vol.14, pp.14, 1995, https://doi.org/10.1039/c2cp23798a
  10. Structuring and destructuring effects along a pathway toward formation of zwitterionic glycine···(H2O)2 complex: many body analysis of clusters and molecular vol.113, pp.9, 1995, https://doi.org/10.1002/qua.24287